Unknown

Dataset Information

0

Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease.


ABSTRACT: Embryonic stem (ES) cells are distinguished by their capacity for self-renewal and pluripotency. Here we characterize the differentiation of ES cell-derived endothelial cells (ESC-ECs), use molecular imaging techniques to examine their survival in vivo, and determine the therapeutic efficacy of ESC-ECs for restoration of cardiac function after ischemic injury.Murine ES cells were transfected with a construct composed of a vascular endothelial cadherin promoter driving enhanced green fluorescence protein (pVE-cadherin-eGFP). Differentiation of ES cells to ECs was detected by FACS analysis using Flk-1 (early EC marker at day 4) and VE-cadherin (late EC marker at day 8). After isolation, these ESC-ECs express endothelial cell markers similar to adult mouse lung endothelial cells, form vascular-like channels, and incorporate DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL). For in vivo imaging, ES cells were transduced with an ubiquitin promoter driving firefly luciferase and monomeric red fluorescence protein (pUb-Fluc-mRFP). A robust correlation exists between Fluc signals and cell numbers by ex vivo imaging analysis (R2=0.98) and by in vitro enzyme assay (R2=0.94). Afterward, 5x10(5) ESC-ECs or PBS (as control) was injected into the hearts of mice undergoing LAD ligation (n=15 per group). Bioluminescence imaging showed longitudinal survival of transplanted ESC-ECs for approximately 8 weeks. Echocardiogram demonstrated significant functional improvement in the ESC-EC group compared with control (P=0.04). Finally, postmortem analysis confirmed increased presence of small capillaries and venules in the infarcted zones by CD31 staining.This is the first study to track the fate and function of transplanted ESC-ECs in the heart. With further validation, these ESC-ECs could become a valuable source of cell therapy for induction of angiogenesis in the treatment of myocardial ischemia.

SUBMITTER: Li Z 

PROVIDER: S-EPMC3657509 | biostudies-literature | 2007 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease.

Li Zongjin Z   Wu Jenny C JC   Sheikh Ahmad Y AY   Kraft Daniel D   Cao Feng F   Xie Xiaoyan X   Patel Manishkumar M   Gambhir Sanjiv S SS   Robbins Robert C RC   Cooke John P JP   Wu Joseph C JC  

Circulation 20070901 11 Suppl


<h4>Background</h4>Embryonic stem (ES) cells are distinguished by their capacity for self-renewal and pluripotency. Here we characterize the differentiation of ES cell-derived endothelial cells (ESC-ECs), use molecular imaging techniques to examine their survival in vivo, and determine the therapeutic efficacy of ESC-ECs for restoration of cardiac function after ischemic injury.<h4>Methods and results</h4>Murine ES cells were transfected with a construct composed of a vascular endothelial cadher  ...[more]

Similar Datasets

| S-EPMC2874560 | biostudies-literature
| S-EPMC4686926 | biostudies-literature
| S-EPMC123658 | biostudies-literature
| S-EPMC3235675 | biostudies-literature
| S-EPMC4969593 | biostudies-literature
| S-EPMC4367527 | biostudies-other
| S-EPMC2838385 | biostudies-literature
| S-EPMC6408820 | biostudies-literature
| S-EPMC5511047 | biostudies-literature
| S-EPMC1851713 | biostudies-literature