Unknown

Dataset Information

0

Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation.


ABSTRACT: Conformational changes of proteins are involved in all aspects of protein function in biology. Almost all classes of proteins respond to changes in their environment, ligand binding, and interaction with other proteins and regulatory agents through undergoing conformational changes of various degrees and magnitudes. Membrane channels and transporters are the major classes of proteins that are responsible for mediating efficient and selective transport of materials across the cellular membrane. Similar to other proteins, they take advantage of conformational changes to make transitions between various functional states. In channels, large-scale conformational changes are mostly involved in the process of "gating", i.e., opening and closing of the pore of the channel protein in response to various signals. In transporters, conformational changes constitute various steps of the conduction process, and, thus, are more closely integrated in the transport process. Owing to significant progress in developing highly efficient parallel algorithms in molecular dynamics simulations and increased computational resources, and combined with the availability of high-resolution, atomic structures of membrane proteins, we are in an unprecedented position to use computer simulation and modeling methodologies to investigate the mechanism of function of membrane channels and transporters. While the entire transport cycle is still out of reach of current methodologies, many steps involved in the function of transport proteins have been characterized with molecular dynamics simulations. Here, we present several examples of such studies from our laboratory, in which functionally relevant conformational changes of membrane channels and transporters have been characterized using extended simulations.

SUBMITTER: Shaikh S 

PROVIDER: S-EPMC3661405 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation.

Shaikh Saher S   Wen Po-Chao PC   Enkavi Giray G   Huang Zhijian Z   Tajkhorshid Emad E  

Journal of computational and theoretical nanoscience 20101201 12


Conformational changes of proteins are involved in all aspects of protein function in biology. Almost all classes of proteins respond to changes in their environment, ligand binding, and interaction with other proteins and regulatory agents through undergoing conformational changes of various degrees and magnitudes. Membrane channels and transporters are the major classes of proteins that are responsible for mediating efficient and selective transport of materials across the cellular membrane. S  ...[more]

Similar Datasets

| S-EPMC3560430 | biostudies-other
| S-EPMC8444333 | biostudies-literature
| S-EPMC4736832 | biostudies-literature
| S-EPMC4375533 | biostudies-literature
| S-EPMC523450 | biostudies-literature
| S-EPMC5589069 | biostudies-literature
| S-EPMC3296038 | biostudies-literature
| S-EPMC8724336 | biostudies-literature
| S-EPMC130513 | biostudies-literature
| S-EPMC1305480 | biostudies-literature