Unknown

Dataset Information

0

Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation.


ABSTRACT: The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKC? can phosphorylate Ser(779) in vitro, whereas overexpression of PKC? results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKC? reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.

SUBMITTER: Lonic A 

PROVIDER: S-EPMC3663510 | biostudies-literature | 2013 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation.

Lonic Ana A   Powell Jason A JA   Kong Yang Y   Thomas Daniel D   Holien Jessica K JK   Truong Nhan N   Parker Michael W MW   Guthridge Mark A MA  

The Journal of biological chemistry 20130405 21


The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/sc  ...[more]

Similar Datasets

| S-EPMC2423162 | biostudies-literature
| S-EPMC5016107 | biostudies-literature
| S-EPMC5662007 | biostudies-literature
| S-EPMC10035721 | biostudies-literature
| S-EPMC6348722 | biostudies-literature
| S-EPMC2820881 | biostudies-literature
| S-EPMC2721285 | biostudies-literature
| S-EPMC1299259 | biostudies-literature
| S-EPMC2963703 | biostudies-literature
| S-EPMC2938843 | biostudies-other