Unknown

Dataset Information

0

Assessing methods for assigning SNPs to genes in gene-based tests of association using common variants.


ABSTRACT: Gene-based tests of association are frequently applied to common SNPs (MAF>5%) as an alternative to single-marker tests. In this analysis we conduct a variety of simulation studies applied to five popular gene-based tests investigating general trends related to their performance in realistic situations. In particular, we focus on the impact of non-causal SNPs and a variety of LD structures on the behavior of these tests. Ultimately, we find that non-causal SNPs can significantly impact the power of all gene-based tests. On average, we find that the "noise" from 6-12 non-causal SNPs will cancel out the "signal" of one causal SNP across five popular gene-based tests. Furthermore, we find complex and differing behavior of the methods in the presence of LD within and between non-causal and causal SNPs. Ultimately, better approaches for a priori prioritization of potentially causal SNPs (e.g., predicting functionality of non-synonymous SNPs), application of these methods to sequenced or fully imputed datasets, and limited use of window-based methods for assigning inter-genic SNPs to genes will improve power. However, significant power loss from non-causal SNPs may remain unless alternative statistical approaches robust to the inclusion of non-causal SNPs are developed.

SUBMITTER: Petersen A 

PROVIDER: S-EPMC3669368 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assessing methods for assigning SNPs to genes in gene-based tests of association using common variants.

Petersen Ashley A   Alvarez Carolina C   DeClaire Scott S   Tintle Nathan L NL  

PloS one 20130531 5


Gene-based tests of association are frequently applied to common SNPs (MAF>5%) as an alternative to single-marker tests. In this analysis we conduct a variety of simulation studies applied to five popular gene-based tests investigating general trends related to their performance in realistic situations. In particular, we focus on the impact of non-causal SNPs and a variety of LD structures on the behavior of these tests. Ultimately, we find that non-causal SNPs can significantly impact the power  ...[more]

Similar Datasets

| S-EPMC6461986 | biostudies-literature
| S-EPMC3513398 | biostudies-literature
| S-EPMC4277321 | biostudies-literature
| S-EPMC3675243 | biostudies-literature
| S-EPMC4945828 | biostudies-literature
| S-EPMC3281828 | biostudies-literature
| S-EPMC4226494 | biostudies-literature
| S-EPMC2732754 | biostudies-literature
| S-EPMC4155250 | biostudies-literature
| 2365471 | ecrin-mdr-crc