Proton-coupled hole hopping in nucleosomal and free DNA initiated by site-specific hole injection.
Ontology highlight
ABSTRACT: Nucleosomes were reconstituted from recombinant histones and a 147-mer DNA sequence containing the damage reporter sequence 5'-…d([2AP]T[GGG](1)TT[GGG](2)TTT[GGG](3)TAT)… with 2-aminopurine (2AP) at position 27 from the dyad axis. Footprinting studies with ?OH radicals reflect the usual effects of "in" and "out" rotational settings, while, interestingly, the guanine oxidizing one-electron oxidant CO(3)(?-) radical does not. Site-specific hole injection was achieved by 308 nm excimer laser pulses to produce 2AP(?+) cations, and superoxide via the trapping of hydrated electrons. Rapid deprotonation (~100 ns) and proton coupled electron transfer generates neutral guanine radicals, G(-H)? and hole hopping between the three groups of [GGG] on micro- to millisecond time scales. Hole transfer competes with hole trapping that involves the combination of O(2)(?-) with G(-H)? radicals to yield predominantly 2,5-diamino-4H-imidazolone (Iz) and minor 8-oxo-7,8-dihydroguanine (8-oxoG) end-products in free DNA (Misiaszek et al., J. Biol. Chem. 2004, 279, 32106). Hole migration is less efficient in nucleosomal than in the identical protein-free DNA by a factor of 1.2-1.5. The Fpg/piperidine strand cleavage ratio is ~1.0 in free DNA at all three GGG sequences and at the "in" rotational settings [GGG](1,3) facing the histone core, and ~2.3 at the "out" setting at [GGG](2) facing away from the histone core. These results are interpreted in terms of competitive reaction pathways of O(2)(?-) with G(-H)? radicals at the C5 (yielding Iz) and C8 (yielding 8-oxoG) positions. These differences in product distributions are attributed to variations in the local nucleosomal B-DNA base pair structural parameters that are a function of surrounding sequence context and rotational setting.
SUBMITTER: Liu Y
PROVIDER: S-EPMC3674890 | biostudies-literature | 2012 May
REPOSITORIES: biostudies-literature
ACCESS DATA