Unknown

Dataset Information

0

Alternative chemical modifications reverse the binding orientation of a pharmacophore scaffold in the active site of macrophage migration inhibitory factor.


ABSTRACT: Pharmacophores are chemical scaffolds upon which changes in chemical moieties (R-groups) at specific sites are made to identify a combination of R-groups that increases the therapeutic potency of a small molecule inhibitor while minimizing adverse effects. We developed a pharmacophore based on a carbonyloxime (OXIM) scaffold for macrophage migration inhibitory factor (MIF), a protein involved in the pathology of sepsis, to validate that inhibition of a catalytic site could produce therapeutic benefits. We studied the crystal structures of MIF.OXIM-based inhibitors and found two opposite orientations for binding to the active site that were dependent on the chemical structures of an R-group. One orientation was completely unexpected based on previous studies with hydroxyphenylpyruvate and (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1). We further confirmed that the unexpected binding mode targets MIF in cellular studies by showing that one compound, OXIM-11, abolished the counter-regulatory activity of MIF on anti-inflammatory glucocorticoid action. OXIM-11 treatment of mice, initiated 24 h after the onset of cecal ligation and puncture-induced sepsis, significantly improved survival when compared with vehicle-treated controls, confirming that inhibition of the MIF catalytic site could produce therapeutic effects. The crystal structures of the MIF inhibitor complexes provide insight for further structure-based drug design efforts.

SUBMITTER: Crichlow GV 

PROVIDER: S-EPMC3684284 | biostudies-literature | 2007 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Alternative chemical modifications reverse the binding orientation of a pharmacophore scaffold in the active site of macrophage migration inhibitory factor.

Crichlow Gregg V GV   Cheng Kai Fan KF   Dabideen Darrin D   Ochani Mahendar M   Aljabari Bayan B   Pavlov Valentin A VA   Miller Edmund J EJ   Lolis Elias E   Al-Abed Yousef Y  

The Journal of biological chemistry 20070525 32


Pharmacophores are chemical scaffolds upon which changes in chemical moieties (R-groups) at specific sites are made to identify a combination of R-groups that increases the therapeutic potency of a small molecule inhibitor while minimizing adverse effects. We developed a pharmacophore based on a carbonyloxime (OXIM) scaffold for macrophage migration inhibitory factor (MIF), a protein involved in the pathology of sepsis, to validate that inhibition of a catalytic site could produce therapeutic be  ...[more]

Similar Datasets

| S-EPMC3593945 | biostudies-literature
2022-04-08 | PXD031143 | Pride
| S-EPMC4859133 | biostudies-literature
| S-EPMC8553141 | biostudies-literature
2020-04-22 | GSE149061 | GEO
| S-EPMC8118224 | biostudies-literature
| S-EPMC4788688 | biostudies-literature
| S-EPMC3816765 | biostudies-literature
| S-EPMC4726817 | biostudies-literature
| S-EPMC3139435 | biostudies-literature