Unknown

Dataset Information

0

HuntMi: an efficient and taxon-specific approach in pre-miRNA identification.


ABSTRACT:

Background

Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification performance. Moreover, those tools are effective for a narrow range of species, usually the model ones. This study aims at improving performance of miRNA classification procedure, extending its usability and reducing computational time.

Results

We present HuntMi, a stand-alone machine learning miRNA classification tool. We developed a novel method of dealing with the class imbalance problem called ROC-select, which is based on thresholding score function produced by traditional classifiers. We also introduced new features to the data representation. Several classification algorithms in combination with ROC-select were tested and random forest was selected for the best balance between sensitivity and specificity. Reliable assessment of classification performance is guaranteed by using large, strongly imbalanced, and taxon-specific datasets in 10-fold cross-validation procedure. As a result, HuntMi achieves a considerably better performance than any other miRNA classification tool and can be applied in miRNA search experiments in a wide range of species.

Conclusions

Our results indicate that HuntMi represents an effective and flexible tool for identification of new microRNAs in animals, plants and viruses. ROC-select strategy proves to be superior to other methods of dealing with class imbalance problem and can possibly be used in other machine learning classification tasks. The HuntMi software as well as datasets used in the research are freely available at http://lemur.amu.edu.pl/share/HuntMi/.

SUBMITTER: Gudys A 

PROVIDER: S-EPMC3686668 | biostudies-literature | 2013 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

HuntMi: an efficient and taxon-specific approach in pre-miRNA identification.

Gudyś Adam A   Szcześniak Michał Wojciech MW   Sikora Marek M   Makałowska Izabela I  

BMC bioinformatics 20130305


<h4>Background</h4>Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification performance. Moreover, those tools are effective for a na  ...[more]

Similar Datasets

| S-EPMC9536303 | biostudies-literature
| S-EPMC10359484 | biostudies-literature
| S-EPMC5327639 | biostudies-literature
| S-EPMC8865746 | biostudies-literature
| S-EPMC3592496 | biostudies-literature
| S-EPMC3217989 | biostudies-literature
| S-EPMC8098674 | biostudies-literature
| S-EPMC8685993 | biostudies-literature
| S-EPMC6144789 | biostudies-literature
2023-03-27 | PXD016787 | Pride