Unknown

Dataset Information

0

The role of uncoupling proteins in diabetes mellitus.


ABSTRACT: Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protective effect on diabetes mellitus that is under the oxidative stress conditions. UCP1 is considered to be a candidate gene for diabetes because of its role in thermogenesis and energy expenditure. UCP2 is expressed in several tissues and acts in the negative regulation of insulin secretion by ?-cells and in fatty acid metabolism. UCP3 plays a role in fatty acid metabolism and energy homeostasis and modulates insulin sensitivity. Several gene polymorphisms of UCP1, UCP2, and UCP3 were reported to be associated with diabetes. The progress in the role of UCP1, UCP2, and UCP3 on diabetes mellitus is summarized in this review.

SUBMITTER: Liu J 

PROVIDER: S-EPMC3687498 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

The role of uncoupling proteins in diabetes mellitus.

Liu Jing J   Li Ji J   Li Wen-Jian WJ   Wang Chun-Ming CM  

Journal of diabetes research 20130605


Uncoupling proteins (UCPs) are anion carriers expressed in the mitochondrial inner membrane that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The physiological functions of UCPs have long been debated since the new UCPs (UCP2 to 5) were discovered, and the role of UCPs in the pathogeneses of diabetes mellitus is one of the hottest topics. UCPs are thought to be activated by superoxide and then decrease mitochondrial free radicals generation; this may provide a protect  ...[more]

Similar Datasets

| S-EPMC8311481 | biostudies-literature
| S-EPMC4781821 | biostudies-literature
2022-03-17 | GSE198836 | GEO
| S-EPMC5643755 | biostudies-other
| S-EPMC4931192 | biostudies-literature
| S-EPMC151194 | biostudies-literature
2017-04-22 | GSE98043 | GEO
| S-EPMC8470378 | biostudies-literature
| S-EPMC5351872 | biostudies-literature
2023-10-24 | PXD042188 | Pride