Unknown

Dataset Information

0

Circuit level defects in the developing neocortex of Fragile X mice.


ABSTRACT: Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex. Unanesthetized Fmr1(-/-) mice exhibited abnormally high synchrony of neocortical network activity, especially during the first two postnatal weeks. Neuronal firing rates were threefold higher in Fmr1(-/-) mice than in wild-type mice during whole-cell recordings manifesting Up/Down states (slow-wave sleep, quiet wakefulness), probably as a result of a higher firing probability during Up states. Combined electroencephalography and calcium imaging experiments confirmed that neurons in mutant mice had abnormally high firing and synchrony during sleep. We conclude that cortical networks in FXS are hyperexcitable in a brain state-dependent manner during a critical period for experience-dependent plasticity. These state-dependent network defects could explain the intellectual, sleep and sensory integration dysfunctions associated with FXS.

SUBMITTER: Goncalves JT 

PROVIDER: S-EPMC3695061 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Circuit level defects in the developing neocortex of Fragile X mice.

Gonçalves J Tiago JT   Anstey James E JE   Golshani Peyman P   Portera-Cailliau Carlos C  

Nature neuroscience 20130602 7


Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex. Unanesthetized Fmr1(-/-) mice exhibited abnormally high synchrony of neocortical network activity, especially during the first two postnatal  ...[more]

Similar Datasets

| S-EPMC2696604 | biostudies-literature
| S-EPMC5970001 | biostudies-literature
| S-EPMC7958455 | biostudies-literature
| S-EPMC7222552 | biostudies-literature
| S-EPMC8488556 | biostudies-literature
| S-EPMC4971772 | biostudies-literature
| S-EPMC6371984 | biostudies-literature
| S-EPMC8152829 | biostudies-literature
| S-EPMC1180514 | biostudies-literature
| S-EPMC3988420 | biostudies-literature