Unknown

Dataset Information

0

Real-time fluorescence loop mediated isothermal amplification for the detection of Acinetobacter baumannii.


ABSTRACT:

Background

Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii.

Methodology and significant findings

Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively.

Conclusion

The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has great potential of field use as a molecular tool for detection of A. baumannii.

SUBMITTER: Wang Q 

PROVIDER: S-EPMC3699609 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-time fluorescence loop mediated isothermal amplification for the detection of Acinetobacter baumannii.

Wang Qinqin Q   Zhou Yanbin Y   Li Shaoli S   Zhuo Chao C   Xu Siqi S   Huang Lixia L   Yang Ling L   Liao Kang K  

PloS one 20130702 7


<h4>Background</h4>Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, est  ...[more]

Similar Datasets

| S-EPMC6284447 | biostudies-other
| S-EPMC5811957 | biostudies-literature
| S-EPMC8837760 | biostudies-literature
| S-EPMC9453007 | biostudies-literature
| S-EPMC4097747 | biostudies-literature
| S-EPMC5645423 | biostudies-literature
| S-EPMC6478783 | biostudies-literature
| S-EPMC7166982 | biostudies-literature
| S-EPMC321710 | biostudies-literature
| S-EPMC7275676 | biostudies-literature