Unknown

Dataset Information

0

Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans.


ABSTRACT: Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifically defective in meiotic DSB resection but not in formation. The mre-11(iow1) mutants displayed chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation was greatly reduced in mre-11(iow1) mutants. Irradiation-induced DSBs during meiosis failed to be repaired from early to middle prophase I in mre-11(iow1) mutants. In the absence of a functional HR, our data suggest that some DSBs in mre-11(iow1) mutants are repaired by the nonhomologous end joining (NHEJ) pathway, as removing NHEJ partially suppressed the meiotic defects shown by mre-11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to EXO-1-dependent HR repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in middle meiotic prophase I and in blocking NHEJ.

SUBMITTER: Yin Y 

PROVIDER: S-EPMC3700128 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans.

Yin Yizhi Y   Smolikove Sarit S  

Molecular and cellular biology 20130513 14


Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifical  ...[more]

Similar Datasets

| S-EPMC6036208 | biostudies-literature
| S-EPMC3670387 | biostudies-literature
| S-EPMC2848573 | biostudies-literature
| S-EPMC6158748 | biostudies-literature
| S-EPMC3731128 | biostudies-literature
| S-EPMC7826270 | biostudies-literature
| S-EPMC1526663 | biostudies-literature
| S-EPMC3632057 | biostudies-literature
| S-EPMC3594748 | biostudies-literature