Unknown

Dataset Information

0

A novel tetrameric gp350 1-470 as a potential Epstein-Barr virus vaccine.


ABSTRACT: Infectious mononucleosis and B-cell transformation in response to infection with Epstein-Barr virus (EBV) is dependent upon binding of the EBV envelope glycoprotein gp350 to CD21 on B-cells. Gp350-specific antibody comprises most of the EBV neutralizing activity in the serum of infected patients, making this protein a promising target antigen for a prophylactic EBV vaccine. We describe a novel, tetrameric gp350-based vaccine that exhibits markedly enhanced immunogenicity relative to its monomeric counterpart. Plasmid DNA was constructed for synthesis, within transfected CHO cells, of a tetrameric, truncated (a.a. 1-470) gp350 protein (gp350(1-470)). Tetrameric gp350(1-470) induced ? 20-fold higher serum titers of gp350(1-470)-specific IgG and >19-fold enhancements in neutralizing titers at the highest dose, and was >25-fold more immunogenic on a per-weight basis than monomeric gp350(1-470). Further, epidermal immunization with plasmid DNA encoding gp350(1-470) tetramer induced 8-fold higher serum titers of gp350(1-470)-specific IgG relative to monomer. Tetrameric gp350(1-470) binding to human CD21 was >24-fold more efficient on a per-weight basis than monomer, but neither tetramer nor monomer mediated polyclonal human B-cell activation. Finally, the introduction of strong, universal tetanus toxoid (TT)-specific CD4+ T-cell epitopes into the tetrameric gp350(1-470) had no effect on the gp350(1-470)-specific IgG response in naïve mice, and resulted in suppressed gp350(1-470)-specific IgG responses in TT-primed mice. Collectively, these data suggest that tetrameric gp350(1-470) is a potentially promising candidate for testing as a prophylactic EBV vaccine, and that protein multimerization, using the approach described herein, is likely to be clinically relevant for enhancing the immunogenicity of other proteins of vaccine interest.

SUBMITTER: Cui X 

PROVIDER: S-EPMC3700395 | biostudies-literature | 2013 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Infectious mononucleosis and B-cell transformation in response to infection with Epstein-Barr virus (EBV) is dependent upon binding of the EBV envelope glycoprotein gp350 to CD21 on B-cells. Gp350-specific antibody comprises most of the EBV neutralizing activity in the serum of infected patients, making this protein a promising target antigen for a prophylactic EBV vaccine. We describe a novel, tetrameric gp350-based vaccine that exhibits markedly enhanced immunogenicity relative to its monomeri  ...[more]

Similar Datasets

| S-EPMC3374359 | biostudies-literature
| S-EPMC1617223 | biostudies-literature
| S-EPMC6429425 | biostudies-literature
| PRJNA794826 | ENA
| S-EPMC5923367 | biostudies-literature
| S-EPMC228477 | biostudies-literature
| S-EPMC3004297 | biostudies-literature
| S-EPMC4403473 | biostudies-literature
| S-EPMC2798422 | biostudies-literature
| S-EPMC7479496 | biostudies-literature