Unknown

Dataset Information

0

A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.


ABSTRACT: Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14)C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC). HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.

SUBMITTER: Gauthier N 

PROVIDER: S-EPMC3702508 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

Gauthier Nicolas N   Wu Jiang Wei JW   Wang Shu Pei SP   Allard Pierre P   Mamer Orval A OA   Sweetman Lawrence L   Moser Ann B AB   Kratz Lisa L   Alvarez Fernando F   Robitaille Yves Y   Lépine François F   Mitchell Grant A GA  

PloS one 20130705 7


Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reacti  ...[more]

Similar Datasets

| S-EPMC1288551 | biostudies-literature
| S-EPMC7647982 | biostudies-literature
| S-EPMC4081121 | biostudies-literature
| S-EPMC3382043 | biostudies-literature
| S-EPMC2944282 | biostudies-literature
| S-EPMC4878186 | biostudies-literature
| S-EPMC4109760 | biostudies-literature
2024-09-11 | GSE242119 | GEO
| S-EPMC5292870 | biostudies-literature
| S-EPMC3030352 | biostudies-literature