Unknown

Dataset Information

0

Assessment of bacterial and structural dynamics in aerobic granular biofilms.


ABSTRACT: Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules formed within 2 weeks by swelling of Zoogloea colonies around flocs, developing subsequently smooth zoogloeal biofilms. However, Zoogloea predominance (37-79%) led to deteriorated nutrient removal during the first months of reactor operation. Upon maturation, improved nitrification (80-100%), nitrogen removal (43-83%), and high but unstable dephosphatation (75-100%) were obtained. Proliferation of dense clusters of nitrifiers, Accumulibacter, and Competibacter from granule cores outwards resulted in heterogeneous bioaggregates, inside which only low abundance Zoogloea (<5%) were detected in biofilm interstices. The presence of different extracellular glycoconjugates detected by fluorescence lectin-binding analysis showed the complex nature of the intracellular matrix of these granules. In the PAO-SBR, granulation occurred within two months with abundant and active Accumulibacter populations (56 ± 10%) that were selected under full anaerobic uptake of volatile fatty acids and that aggregated as dense clusters within heterogeneous granules. Flocs self-granulated in the GAO-SBR after 480 days during a period of over-aeration caused by biofilm growth on the oxygen sensor. Granules were dominated by heterogeneous clusters of Competibacter (37 ± 11%). Zoogloea were never abundant in biomass of both PAO- and GAO-SBRs. This study showed that Zoogloea, Accumulibacter, and Competibacter affiliates can form granules, and that the granulation mechanisms rely on the dominant population involved.

SUBMITTER: Weissbrodt DG 

PROVIDER: S-EPMC3707108 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assessment of bacterial and structural dynamics in aerobic granular biofilms.

Weissbrodt David G DG   Neu Thomas R TR   Kuhlicke Ute U   Rappaz Yoan Y   Holliger Christof C  

Frontiers in microbiology 20130710


Aerobic granular sludge (AGS) is based on self-granulated flocs forming mobile biofilms with a gel-like consistence. Bacterial and structural dynamics from flocs to granules were followed in anaerobic-aerobic sequencing batch reactors (SBR) fed with synthetic wastewater, namely a bubble column (BC-SBR) operated under wash-out conditions for fast granulation, and two stirred-tank enrichments of Accumulibacter (PAO-SBR) and Competibacter (GAO-SBR) operated at steady-state. In the BC-SBR, granules  ...[more]

Similar Datasets

| S-EPMC9080576 | biostudies-literature
| PRJNA956700 | ENA
| PRJNA430793 | ENA
| PRJEB35721 | ENA
| PRJNA492848 | ENA
| PRJNA492831 | ENA
| PRJNA412235 | ENA
| PRJNA418086 | ENA
| PRJNA418217 | ENA
| PRJNA482756 | ENA