Unknown

Dataset Information

0

Conserved gating elements in TRPC4 and TRPC5 channels.


ABSTRACT: TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca(2+)-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4-S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca(2+) of the culture medium. Current-voltage relationships of the TRPC4G503S and TRPC5G504S mutant ion channels resemble that of fully activated TRPC4 and TRPC5 wild-type channels, respectively. Modeling the structure of the transmembrane domains and the pore region (S4-S6) of TRPC4 predicts a conserved serine residue within the C-terminal sequence of the predicted S6 helix as a potential interaction site. Introduction of a second mutation (S623A) into TRPC4G503S suppressed the constitutive activation and partially rescued its function. These results indicate that the S4-S5 linker is a critical constituent of TRPC4/C5 channel gating and that disturbance of its sequence allows channel opening independent of any sensor domain.

SUBMITTER: Beck A 

PROVIDER: S-EPMC3707650 | biostudies-literature | 2013 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


TRPC4 and TRPC5 proteins share 65% amino acid sequence identity and form Ca(2+)-permeable nonselective cation channels. They are activated by stimulation of receptors coupled to the phosphoinositide signaling cascade. Replacing a conserved glycine residue within the cytosolic S4-S5 linker of both proteins by a serine residue forces the channels into an open conformation. Expression of the TRPC4G503S and TRPC5G504S mutants causes cell death, which could be prevented by buffering the Ca(2+) of the  ...[more]

Similar Datasets

| S-EPMC1892805 | biostudies-literature
| S-EPMC7116557 | biostudies-literature
| S-EPMC6049859 | biostudies-other
| S-EPMC2396881 | biostudies-literature
| S-EPMC2852980 | biostudies-literature
| S-EPMC5599800 | biostudies-other
| S-EPMC8643255 | biostudies-literature
| S-EPMC4485022 | biostudies-literature
| S-EPMC4388645 | biostudies-literature
| S-EPMC3622007 | biostudies-other