Project description:Psychotropic drugs can induce strong metabolic adverse effects, potentially increasing morbidity and/or mortality of patients. Metabolomic profiling, by studying the levels of numerous metabolic intermediates and products in the blood, allows a more detailed examination of metabolism dysfunctions. We aimed to identify blood metabolomic markers associated with weight gain in psychiatric patients. Sixty-two patients starting a treatment known to induce weight gain were recruited. Two hundred and six selected metabolites implicated in various pathways were analyzed in plasma, at baseline and after 1 month of treatment. Additionally, 15 metabolites of the kynurenine pathway were quantified. This latter analysis was repeated in a confirmatory cohort of 24 patients. Among the 206 metabolites, a plasma metabolomic fingerprint after 1 month of treatment embedded 19 compounds from different chemical classes (amino acids, acylcarnitines, carboxylic acids, catecholamines, nucleosides, pyridine, and tetrapyrrole) potentially involved in metabolic disruption and inflammation processes. The predictive potential of such early metabolite changes on 3 months of weight evolution was then explored using a linear mixed-effects model. Of these 19 metabolites, short-term modifications of kynurenine, hexanoylcarnitine, and biliverdin, as well as kynurenine/tryptophan ratio at 1 month, were associated with 3 months weight evolution. Alterations of the kynurenine pathway were confirmed by quantification, in both exploratory and confirmatory cohorts. Our metabolomic study suggests a specific metabolic dysregulation after 1 month of treatment with psychotropic drugs known to induce weight gain. The identified metabolomic signature could contribute in the future to the prediction of weight gain in patients treated with psychotropic drugs.
Project description:Neurologists have a new toolbox of options for neurorehabilitation of disabling brain disorders such as stroke and traumatic brain injury. An emerging intellectual paradigm for neurologic recovery that includes neural regeneration, repair, and dynamic reorganization of functional neural systems, as well as increasing awareness of behavioral principles that may support best return to function and freedom, brought forward treatments based on experience-dependent learning, neurophysiologic stimulation, and a combination of these concepts. In this article, we summarize five rehabilitative approaches to watch: constraint therapy for motor and language recovery, synergy of motor-language rehabilitation, prism adaptation training and other virtual feedback approaches, and noninvasive magnetic and electrical brain stimulation.
Project description:Corticobasal syndrome (CBS) is characterized by asymmetric involuntary movements including rigidity, tremor, dystonia, and myoclonus, and often associated with apraxia, cortical sensory deficits, and alien limb phenomena. Additionally, there are various nonmotor (cognitive and language) deficits. CBS is associated with several distinct histopathologies, including corticobasal degeneration, other forms of tau-related frontotemporal lobar degeneration such as progressive supranuclear palsy, and Alzheimer disease. Accurate antemortem diagnosis of underlying pathology in CBS is challenging, though certain clinical and imaging findings may be helpful. Five recent advances in the understanding of CBS are reviewed, including clinical and pathologic features, imaging and CSF biomarkers, the role of specific genes, and the concept of a spectrum of tauopathies.
Project description:Recent reports herald important advances in our understanding and management of gliomas. A role for alkylator chemotherapy in the management of certain high-grade gliomas has been confirmed and linked to specific, clinically ascertainable molecular markers. Magnetic resonance spectroscopy can now image 2-hydroxyglutarate, an oncometabolite restricted to the three-quarters of low-intermediate grade gliomas harboring an isocitrate dehydrogenase gene mutation; this has powerful implications for diagnosis and assessment of response to therapies. Genome-wide association studies point to several SNPs conveying increased risk of glioma; further studies of the involved genes and RNA products will enhance our understanding of glioma development. Finally, high-throughput sequencing has identified novel mutations in a histone-coding gene and in genes related to the histone complex in pediatric glioblastoma.
Project description:Purpose of reviewTo present emerging issues in neurometabolic disorders, with an emphasis on the diagnostic workup of patients with suspected neurometabolic disorders and some future challenges in the care for these patients.Recent findingsNext-generation sequencing and next-generation metabolic screening increase the speed and yield of the diagnostic process in neurometabolic disorders. Furthermore, they deepen our insights into the underlying disease mechanisms. Care of adult patients with neurometabolic disorders is an expanding subspecialty, especially in internal medicine and neurology.SummaryWe briefly discuss some novel genetic and biochemical laboratory techniques and changing insights in the molecular basis of disease, and illustrate the importance of MRI pattern recognition in the diagnostic process. Furthermore, we discuss gene therapy that is cautiously entering the field, and pay attention to the new field of (transition of) care for adult patients with inborn errors of metabolism.
Project description:BACKGROUND:Metabolic side effects induced by psychotropic drugs represent a major health issue in psychiatry. CREB-regulated transcription coactivator 1 (CRTC1) gene plays a major role in the regulation of energy homeostasis and epigenetic mechanisms may explain its association with obesity features previously described in psychiatric patients. This prospective study included 78 patients receiving psychotropic drugs that induce metabolic disturbances, with weight and other metabolic parameters monitored regularly. Methylation levels in 76 CRTC1 probes were assessed before and after 1 month of psychotropic treatment in blood samples. RESULTS:Significant methylation changes were observed in three CRTC1 CpG sites (i.e., cg07015183, cg12034943, and cg 17006757) in patients with early and important weight gain (i.e., equal or higher than 5% after 1 month; FDR p value = 0.02). Multivariable models showed that methylation decrease in cg12034943 was more important in patients with early weight gain (? 5%) than in those who did not gain weight (p = 0.01). Further analyses combining genetic and methylation data showed that cg12034943 was significantly associated with early weight gain in patients carrying the G allele of rs4808844A>G (p = 0.03), a SNP associated with this methylation site (p = 0.03). CONCLUSIONS:These findings give new insights on psychotropic-induced weight gain and underline the need of future larger prospective epigenetic studies to better understand the complex pathways involved in psychotropic-induced metabolic side effects.
Project description:Antipsychotic drugs (APs) are used to treat psychiatric disorders but also have the prominent side effect of weight gain resulting in a higher incidence of metabolic disease in this patient group. While the majority of patients gain significant weight in response to APs some patients are relatively resistant to these effects. APs such as clozapine and olanzapine are deemed to be highly efficacious at treating psychiatric conditions yet they have some of the highest weight gain liabilities. Therefore, there is a need to determine which patients are less susceptible to the metabolic side effects of APs and would be good candidates for drugs such as olanzapine, and conversely, identifying patients that should be prescribed alternative APs with less weight gain liabilities.