Unknown

Dataset Information

0

An algorithm to predict phenotypic severity in mucopolysaccharidosis type I in the first month of life.


ABSTRACT: INTRODUCTION: Mucopolysaccharidosis type I (MPS I) is a progressive multisystem lysosomal storage disease caused by deficiency of the enzyme ?-L-iduronidase (IDUA). Patients present with a continuous spectrum of disease severity, and the most severely affected patients (Hurler phenotype; MPS I-H) develop progressive cognitive impairment. The treatment of choice for MPS I-H patients is haematopoietic stem cell transplantation, while patients with the more attenuated phenotypes benefit from enzyme replacement therapy. METHODS: Thirty patients were included in this study. Genotypes were collected from all patients and all patients were phenotypically categorized at an age of?>?18 months based on the clinical course of the disease. In 18 patients, IDUA activity in fibroblast cultures was measured using an optimized IDUA assay. Clinical characteristics from the first month of life were collected from 23 patients. RESULTS: Homozygosity or compound heterozygosity for specific mutations which are associated with MPS I-H, discriminated a subset of patients with MPS I-H from patients with more attenuated phenotypes (specificity 100%, sensitivity 82%). Next, we found that enzymatic analysis of IDUA activity in fibroblasts allowed identification of patients affected by MPS I-H. Therefore, residual IDUA activity in fibroblasts was introduced as second step in the algorithm. Patients with an IDUA activity of ?0.66 nmol × mg(-1) × hr(-1) was only observed in more attenuated patients. Patients with an intermediate IDUA activity could be further classified by the presence of differentiating clinical characteristics, resulting in a model with 100% sensitivity and specificity for this cohort of patients. CONCLUSION: Using genetic, biochemical and clinical characteristics, all potentially available in the newborn period, an algorithm was developed to predict the MPS I phenotype, allowing timely initiation of the optimal treatment strategy after introduction of NBS.

SUBMITTER: Kingma SD 

PROVIDER: S-EPMC3710214 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

An algorithm to predict phenotypic severity in mucopolysaccharidosis type I in the first month of life.

Kingma Sandra D K SD   Langereis Eveline J EJ   de Klerk Clasine M CM   Zoetekouw Lida L   Wagemans Tom T   IJlst Lodewijk L   Wanders Ronald J A RJ   Wijburg Frits A FA   van Vlies Naomi N  

Orphanet journal of rare diseases 20130709


<h4>Introduction</h4>Mucopolysaccharidosis type I (MPS I) is a progressive multisystem lysosomal storage disease caused by deficiency of the enzyme α-L-iduronidase (IDUA). Patients present with a continuous spectrum of disease severity, and the most severely affected patients (Hurler phenotype; MPS I-H) develop progressive cognitive impairment. The treatment of choice for MPS I-H patients is haematopoietic stem cell transplantation, while patients with the more attenuated phenotypes benefit from  ...[more]

Similar Datasets

| S-EPMC5725696 | biostudies-other
| S-EPMC11321909 | biostudies-literature
| S-EPMC4561597 | biostudies-literature
| S-EPMC5523543 | biostudies-other
| S-EPMC6764635 | biostudies-literature
2014-11-24 | GSE62189 | GEO
2014-11-24 | E-GEOD-62189 | biostudies-arrayexpress
| S-EPMC9825625 | biostudies-literature
| S-EPMC4373678 | biostudies-literature
| S-EPMC7151028 | biostudies-literature