Project description:To explore increased risk for human Rickettsia spp. infection in Germany, we investigated recreational areas and renatured brown coal surface-mining sites (also used for recreation) for the presence of spotted fever group rickettsiae in ticks. R. raoultii (56.7%), R. slovaca (13.3%), and R. helvetica (>13.4%) were detected in the respective tick species.
Project description:A total of 370 ticks, encompassing 7 species from 4 genera, were collected during 2002-2006 from domestic animals and vegetation in the Taza region of northeastern Morocco. Rickettsial DNA was identified in 101 ticks (27%) by sequencing PCR products of fragments of the citrate synthase and outer membrane protein genes of Rickettsia spp. Seven rickettsiae of the spotted fever group were identified, including 4 pathogens: R. aeschlimannii in Hyalomma marginatum marginatum, R. massiliae in Rhipicephalus sanguineus, R. slovaca in Dermacentor marginatus, and R. monacensis in Ixodes ricinus. Two suspected pathogens were also detected (R. raoultii in D. marginatus and R. helvetica in I. ricinus). An incompletely described Rickettsia sp. was detected in Haemaphysalis spp. ticks.
Project description:Birds are important hosts and dispersers of parasitic arthropods and vector-borne zoonotic pathogens. Particularly migratory species may carry these parasites over long distances in short time periods. Migratory hotspots present ideal conditions to get a snapshot of parasite and pathogen diversity of birds migrating between continents. The aim of this study was to investigate the presence and diversity of Rickettsia spp. in ticks collected from birds at a migratory hot-spot in the Danube Delta, Romania, eastern Europe.DNA was extracted from ticks that were collected from migratory birds in the Danube Delta during migratory seasons in 2011-2012. Two 360 bp fragments of the 16S ribosomal RNA gene and a 381 bp fragment Gene gltA were PCR amplified and analyzed by sequence analysis (performed at Macrogen Europe, Amsterdam, The Netherlands). Nucleotide sequences were compared to reference sequences available in the GenBank database, using Basic Local Alignment Search Tool.Four hundred ticks of four different species were found on 11 bird species. The prevalence of Rickettsia spp. infection was 14 % (56/400, CI: 11.7-29.1), with significantly more nymphs hosting rickettsial infection compared to larvae (48 vs 7; P?<?0.001). Significantly more ticks in nymphal stage were hosting Rickettsia spp. infection in spring, than in autumn. Four different genospecies were found: R. monacensis (29 ticks), R. helvetica (13), R. massiliae (3) and R. slovaca (2). The seasonal distribution of different Rickettsia spp. was heterogeneous; with most of the R. monacensis-infected ticks were found in spring, while more R. helvetica were found in autumn than spring. R. massiliae was found only in autumn and R. slovaca was found only in spring.This study has shown that birds migrating through eastern Europe may carry ticks infected with a high diversity of rickettsial pathogens, with four Rickettsia spp. recorded. Migratory direction was important for pathogen burden, with seasonal differences in the occurrence of individual Rickettsia species. Here we report the first individual records of different Rickettsia spp. in H. concinna (R. monacensis), I. arboricola (R. helvetica, R. massiliae) and I. redikorzevi (R. helvetica) and also the first geographical record of occurrence of R. massiliae in Romania, representing the easternmost observation on the continent.
Project description:We report molecular evidence for the presence of spotted fever group rickettsiae (SFGR) in ticks collected from roe deer, addax, red foxes, and wild boars in Israel. Rickettsia aeschlimannii was detected in Hyalomma marginatum and Hyalomma detritum while Rickettsia massiliae was present in Rhipicephalus turanicus ticks. Furthermore, a novel uncultured SFGR was detected in Haemaphysalis adleri and Haemaphysalis parva ticks from golden jackals. The pathogenicity of the novel SFGR for humans is unknown; however, the presence of multiple SFGR agents should be considered when serological surveillance data from Israel are interpreted because of significant antigenic cross-reactivity among Rickettsia. The epidemiology and ecology of SFGR in Israel appear to be more complicated than was previously believed.
Project description:Tick species distribution and prevalence of spotted fever group Rickettsiae (SFGR) in ticks were investigated in Zhejiang Province, China in 2010 and 2011. PCR was used to detect SFGR and positive amplicons were sequenced, compared to published sequences and phylogenic analysis was performed using MEGA 4.0. A total of 292 adult ticks of ten species were captured and 7.5 % (22/292) of the ticks were PCR-positive for SFG Rickettsia. The PCR-positive rates were 5.5 % (6/110) for Haemaphysalis longicornis, 3.6 % (1/28) for Amblyomma testudinarium and 16 % (15/94) for Ixodes sinensis, respectively. Phylogenetic analyses of gltA genes detected in ticks indicated that there are two dominating groups of SFGR. Sequences of group one were closely related to Rickettsia monacensis, whereas sequences of group two were closest related to Rickettsia heilongjiangensis and Rickettsia japonica, which are human pathogens. Our findings underline the importance of these ticks in public health surveillance in Zhejiang Province, China.
Project description:BackgroundRickettsia spp. are obligate intracellular bacteria and well known as transmitted by arthropods. These pathogens have a broad geographic distribution and a high degree of biological and clinical diversity. This study was conducted to determine the prevalence and molecular characterization of Rickettsia spp. in ticks collected from Gansu, where Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum were previously reported in ticks and ruminants.MethodsA total of 1,583 questing Haemaphysalis qinghaiensis ticks were collected and tested for the presence of Rickettsia spp. gltA gene by PCR. Samples positive for gltA were examined by specific primers targeted for the ompA gene of SFG rickettsiae. The infections were further validated by sequencing and positive samples were genetically characterized based on the gltA and ompA genes.ResultsIn total, Rickettsia spp. infection was found in 179 (18.5 %) H. qinghaiensis tick pools by using PCR and primers specific for the gltA gene. Of those, 157 (16.3 %) tick pools were positive for SFG rickettsiae by PCR based on ompA gene. Amplification and molecular analysis of the nucleotide sequences of gltA and ompA genes indicated three potential novel spotted fever group rickettsiae in H. qinghaiensis ticks. These three potential novel spotted fever group rickettsiae were clustered together in a subgroup, which represents a sister taxon to and separates from other known four SFG rickettsiae subgroups.ConclusionsThis study revealed a high infection rate of SFG rickettsiae in H. qinghaiensis ticks in northwest China. Three potential novel spotted fever group rickettsiae classified into a novel SFG rickettsiae subgroup were identified and named "Candidatus Rickettsia gannanii" related strains in recognition of the location where it was first detected.
Project description:Ixodidae ticks are vectors and reservoirs of several species of rickettsiae, and tick-borne rickettsioses are reported worldwide. This study was aimed to verify the distribution of spotted fever group rickettsiae associated with ticks in a wild environment, the National Park of Gargano, where there is proximity between wild and domestic animals, and which is within an endemic area for rickettsiosis. Ticks were collected from animals or vegetation, morphologically identified and tested by a PCR targeting the 17kDa gene, and by a loop-mediated isothermal amplification (LAMP) targeting ompB gene. Out of 34 tested tick pools, 2 from Dermacentor marginatus, 1 from Ixodes ricinus, and 1 from Rhipicephalus turanicus resulted positive. Nucleotide sequences of amplicons showed high similarity with sequences from Rickettsia slovaca, Rickettsia raoultii, Rickettsia helvetica, and Rickettsia felis. The overall calculated infection rate was 26.19 per 1,000, while it rose up to 107.77 when only D. marginatus was considered. The results highlight the association among Ri. slovaca, Ri. raoultii, D. marginatus and wild boars from which infected ticks were collected. Finally, the study shows the low efficacy of the previously described LAMP method for the detection of Rickettsia spp., when compared to PCR, making urgent the development of most effective LAMP protocols.
Project description:The Rickettsia species transmitted by ticks are mostly classified within the spotted fever group rickettsiae (SFGR), which causes tick-borne rickettsiosis. Although efforts have been made to investigate their prevalence in the Republic of Korea (ROK), research has been limited to certain areas. Furthermore, the pooling method for ticks does not fully reflect the exact infection rate. Therefore, we aimed to perform molecular identification of SFGR in ticks to elucidate the current prevalence of tick-borne rickettsiosis in the ROK. The SFGR of ticks was identified using polymerase chain reaction targeting the 17 kDa antigen, ompA, and gltA, followed by sequencing for species identification and phylogenetic analysis. In total, 302 ticks belonging to four species (Haemaphysalis flava, H. longicornis, Ixodes nipponensis, and Amblyomma testudinarium) were collected between April and November 2022. The overall SFGR infection rate was 26.8% (81/302 patients). Both adult and nymphal ticks and the SFGR infection rate increased during April-May, reaching their peaks in June, followed by a marked decline in August and July, respectively. Phylogenetic analysis revealed three species (R. monacensis, R. heilongjiangensis, and Candidatus R. jingxinensis) of SFGR. Thus, our results emphasize the importance of tick surveys for the prevention and management of tick-borne rickettsiosis.
Project description:Spotted fever group (SFG) rickettsiae are obligate intracellular Gram-negative bacteria mainly associated with ticks. In Japan, several hundred cases of Japanese spotted fever, caused by Rickettsia japonica, are reported annually. Other Rickettsia species are also known to exist in ixodid ticks; however, their phylogenetic position and pathogenic potential are poorly understood. We conducted a nationwide cross-sectional survey on questing ticks to understand the overall diversity of SFG rickettsiae in Japan. Out of 2,189 individuals (19 tick species in 4 genera), 373 (17.0%) samples were positive for Rickettsia spp. as ascertained by real-time PCR amplification of the citrate synthase gene (gltA). Conventional PCR and sequencing analyses of gltA indicated the presence of 15 different genotypes of SFG rickettsiae. Based on the analysis of five additional genes, we characterised five Rickettsia species; R. asiatica, R. helvetica, R. monacensis (formerly reported as Rickettsia sp. In56 in Japan), R. tamurae, and Candidatus R. tarasevichiae and several unclassified SFG rickettsiae. We also found a strong association between rickettsial genotypes and their host tick species, while there was little association between rickettsial genotypes and their geographical origins. These observations suggested that most of the SFG rickettsiae have a limited host range and are maintained in certain tick species in the natural environment.
Project description:BackgroundSpotted fever group (SFG) rickettsiae have recently been identified for the first time in UK ticks. This included the findings of Rickettsia helvetica in Ixodes ricinus and Rickettsia raoultii in Dermacentor reticulatus. This paper further investigates the occurrence of SFG rickettsiae in additional geographically distinct populations of D. reticulatus, and for the first time, investigates the occurrence of SFG rickettsiae in UK populations of Haemaphysalis punctata ticks.MethodsQuesting D. reticulatus and H. punctata were collected at a number of sites in England and Wales. DNA from questing ticks was extracted by alkaline lysis and detection of rickettsiae DNA was performed, in addition to detection of A. phagocytophilum, N. mikurensis, C. burnetii and B. burgdorferi sensu lato.ResultsThis paper builds on previous findings to include the detection of spotted fever Rickettsia which showed the highest homology to Rickettsia massiliae in Haemaphysalis punctata, as well as R. helvetica in D. reticulatus. The occurrence of SFG rickettsiae in D. reticulatus in the UK appears to be confined only to Welsh and Essex populations, with no evidence so far from Devon. Similarly, the occurrence of SFG rickettsiae in H. punctata appears confined to one of two farms known to be infested with this tick in North Kent, with no evidence so far from the Sussex populations. Anaplasma phagocytophilum, Neoehrlichia mikurensis, Coxiella burnetii and Borrelia burgdorferi sensu lato DNA was not detected in any of the ticks.ConclusionThese two tick species are highly restricted in their distribution in England and Wales, but where they do occur they can be abundant. Following detection of these SFG rickettsiae in additional UK tick species, as well as I. ricinus, research should now be directed towards clarifying firstly the geographic distribution of SFG rickettsiae in UK ticks, and secondly to assess the prevalence rates in ticks, wild and domesticated animals and humans to identify the drivers for disease transmission and their public health significance.