Developmental differences in IFN signaling affect GATA1s-induced megakaryocyte hyperproliferation.
Ontology highlight
ABSTRACT: About 10% of Down syndrome (DS) infants are born with a transient myeloproliferative disorder (DS-TMD) that spontaneously resolves within the first few months of life. About 20%-30% of these infants subsequently develop acute megakaryoblastic leukemia (DS-AMKL). Somatic mutations leading to the exclusive production of a short GATA1 isoform (GATA1s) occur in all cases of DS-TMD and DS-AMKL. Mice engineered to exclusively produce GATA1s have marked megakaryocytic progenitor (MkP) hyperproliferation during early fetal liver (FL) hematopoiesis, but not during postnatal BM hematopoiesis, mirroring the spontaneous resolution of DS-TMD. The mechanisms that underlie these developmental stage-specific effects are incompletely understood. Here, we report a striking upregulation of type I IFN-responsive gene expression in prospectively isolated mouse BM- versus FL-derived MkPs. Exogenous IFN-? markedly reduced the hyperproliferation FL-derived MkPs of GATA1s mice in vitro. Conversely, deletion of the ?/? IFN receptor 1 (Ifnar1) gene or injection of neutralizing IFN-?/? antibodies increased the proliferation of BM-derived MkPs of GATA1s mice beyond the initial postnatal period. We also found that these differences existed in human FL versus BM megakaryocytes and that primary DS-TMD cells expressed type I IFN-responsive genes. We propose that increased type I IFN signaling contributes to the developmental stage-specific effects of GATA1s and possibly the spontaneous resolution of DS-TMD.
SUBMITTER: Woo AJ
PROVIDER: S-EPMC3726146 | biostudies-literature | 2013 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA