Unknown

Dataset Information

0

Impact of the Ku complex on HIV-1 expression and latency.


ABSTRACT: Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level of a panel of non-replicative lentiviral vectors expressing the green fluorescent protein in human colorectal carcinoma HCT 116 cells, stably or transiently depleted of Ku. We found that in this cellular model the depletion of Ku did not affect the efficiency of (pre-)integrative steps but decreased the early HIV-1 expression by acting at the transcriptional level. This negative effect was specific of the HIV-1 promoter, required the obligatory step of viral DNA integration and was reversed by transient depletion of p53. We also provided evidence on a direct binding of Ku to HIV-1 LTR in transduced cells. Ku not only promotes the early transcription from the HIV-1 promoter, but also limits the constitution of viral latency. Moreover, in the presence of a normal level of Ku, HIV-1 expression was gradually lost over time, likely due to the counter-selection of HIV-1-expressing cells. On the contrary, the reactivation of transgene expression from HIV-1 by means of trichostatin A- or tumor necrosis factor ?-administration was enhanced under condition of Ku haplodepletion, suggesting a phenomenon of provirus latency. These observations plead in favor of the hypothesis that Ku has an impact on HIV-1 expression and latency at early- and mid-time after integration.

SUBMITTER: Manic G 

PROVIDER: S-EPMC3726783 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications


Ku, a cellular complex required for human cell survival and involved in double strand break DNA repair and multiple other cellular processes, may modulate retroviral multiplication, although the precise mechanism through which it acts is still controversial. Recently, Ku was identified as a possible anti-human immunodeficiency virus type 1 (HIV-1) target in human cells, in two global approaches. Here we investigated the role of Ku on the HIV-1 replication cycle by analyzing the expression level  ...[more]

Similar Datasets

| S-EPMC5354304 | biostudies-literature
| S-EPMC4217705 | biostudies-literature
| S-EPMC7980449 | biostudies-literature
| S-EPMC10017042 | biostudies-literature
| S-EPMC6950696 | biostudies-literature
2024-09-17 | GSE277306 | GEO
| S-EPMC4646685 | biostudies-literature
| S-EPMC3226458 | biostudies-other
2010-06-06 | E-GEOD-1441 | biostudies-arrayexpress
| S-EPMC4395878 | biostudies-literature