Project description:Norovirus is the leading cause of acute gastroenteritis with most infections caused by GII.4 variants. To understand the evolutionary processes that contribute to the emergence of GII.4 variants, we examined the molecular epidemiology of norovirus-associated acute gastroenteritis in Australia and New Zealand from 893 outbreaks between 2009 and 2012. Throughout the study GII.4 New Orleans 2009 was predominant; however, during 2012 it was replaced by an emergent GII.4 variant, Sydney 2012. An evolutionary analysis of capsid gene sequences was performed to determine the origins and selective pressures driving the emergence of these recently circulating GII.4 variants. This revealed that both New Orleans 2009 and Sydney 2012 share a common ancestor with GII.4 Apeldoorn 2007. Furthermore, pre-epidemic ancestral variants of each virus were identified up to two years before their pandemic emergence. Adaptive changes at known blockade epitopes in the viral capsid were also identified that likely contributed to their emergence.
Project description:We conducted sentinel-based surveillance for norovirus in the Pudong area of Shanghai, China, during 2012-2013, by analyzing 5,324 community surveys, 408,024 medical records, and 771 laboratory-confirmed norovirus infections among 3,877 diarrhea cases. Our analysis indicated an outpatient incidence of 1.5/100 person-years and a community incidence of 8.9/100 person-years for norovirus-associated diarrhea.
Project description:Norovirus (NoV) is a leading cause of sporadic cases and outbreaks of acute gastroenteritis (AGE). Increased NoV activity was observed in Beijing, China during winter 2014-2015; therefore, we examined the epidemiological patterns and genetic characteristics of NoV in the sporadic cases and outbreaks.The weekly number of infectious diarrhea cases reported by all hospitals in Beijing was analyzed through the China information system for disease control and prevention. Fecal specimens were collected from the outbreaks and outpatients with AGE, and GI and GII NoVs were detected using real time reverse transcription polymerase chain reaction. The partial capsid genes and RNA-dependent RNA polymerase (RdRp) genes of NoV were both amplified and sequenced, and genotyping and phylogenetic analyses were performed.Between December 2014 and March 2015, the number of infectious diarrhea cases in Beijing (10,626 cases) increased by 35.6% over that of the previous year (7835 cases), and the detection rate of NoV (29.8%, 191/640) among outpatients with AGE was significantly higher than in the previous year (12.9%, 79/613) (?(2)?=?53.252, P?<?0.001). Between November 2014 and March 2015, 35 outbreaks of AGE were reported in Beijing, and NoVs were detected in 33 outbreaks, all of which belonged to the GII genogroup. NoVs were sequenced and genotyped in 22 outbreaks, among which 20 were caused by a novel GII.17 strain. Among outpatients with AGE, this novel GII.17 strain was first detected in an outpatient in August 2014, and it replaced GII.4 Sydney_2012 as the predominant variant between December 2014 and March 2015. A phylogenetic analysis of the capsid genes and RdRp genes revealed that this novel GII.17 strain was distinct from previously identified GII variants, and it was recently designated as GII.P17_GII.17. This variant was further clustered into two sub-groups, named GII.17_2012 and GII.17_2014. During winter 2014-2015, GII.17_2014 caused the majority of AGE outbreaks in China and Japan.During winter 2014-2015, a novel NoV GII.17 variant replaced the GII.4 variant Sydney 2012 as the predominant strain in Beijing, China and caused increased NoV activity.
Project description:Norovirus (NoV) is now recognized as a leading cause of nonbacterial acute gastroenteritis; however, the NoV GII.17 genotype has rarely been reported as the predominant genotype in clinical diarrhea cases. During the winter of 2014–2015, the GII.17 genotype, together with the NoV GII.4 genotype, dominated in sporadic adult patients with gastroenteritis in Shanghai. Phylogenetic analysis based on full-length VP1 amino acid sequences showed that the GII.17 strains that emerged in Shanghai have close evolutionary relationships with strains recently collected in the Hong Kong area, Guangdong province of China, and Japan during the same period. This cluster in the phylogenetic tree may represent a novel NoV GII.17 lineage recently circulating in East Asia. Pairwise distances between clusters also revealed the evolution of the NoV GII.17 genotype in previous decades. Our study emphasizes the importance of combined surveillance of NoV-associated infections.
Project description:Noroviruses (NoVs) are the leading cause of gastroenteritis outbreaks in humans worldwide. Since late 2012, a new GII.4 variant Sydney 2012 has caused a significant increase in NoV epidemics in several countries. From November of 2012 to January of 2013, three gastroenteritis outbreaks occurred in two social welfare homes (Outbreaks A and B) and a factory (Outbreak C) in Shenzhen city of China. Feces and swabs were collected for laboratory tests for causative agents. While no bacterial pathogen was identified, all three outbreaks were caused by NoVs with detection rates of 26.2% (16/61) at Outbreak A, 35.2% (38/108) at Outbreak B), and 59.3% (16/27) at Outbreaks C. For Outbreak B, 25 of the 29 symptomatic individuals (86.2%) and 13 of the 79 asymptomatic individuals (16.5%) were found NoV-positive. For Outbreak C, an asymptomatic food handler was NoV-positive. All thirteen NoV sequences from the three outbreaks were classified into genogroup II and genotype 4 (GII.4), which we identified to be the GII.4 Sydney 2012 variant. The genome of two isolates from Outbreaks A and B were recombinant with the opening reading frame (ORF) 1 of GII.4 Osaka 2007 and ORF2 and 3 of the GII.4 New Orleans. Our study indicated that the GII.4 Sydney 2012 variant emerged and caused the outbreaks in China.