ABSTRACT: Bacterial conjugation is the process by which a conjugative plasmid transfers from donor to recipient bacterium. During this process, single-stranded plasmid DNA is actively and specifically transported from the cytoplasm of the donor, through a large membrane-spanning assembly known as the pore complex, and into the cytoplasm of the recipient. In Gram negative bacteria, construction of the pore requires localization of a subset of structural and catalytically active proteins to the bacterial periplasm. Unlike the cytoplasm, the periplasm contains proteins that promote disulfide bond formation within or between cysteine-containing proteins. To ensure proper protein folding and assembly, bacteria employ periplasmic redox systems for thiol oxidation, disulfide bond/sulfenic acid reduction, and disulfide bond isomerization. Recent data suggest that plasmid-based proteins belonging to the disulfide bond formation family play an integral role in the conjugative process by serving as mediators in folding and/or assembly of pore complex proteins. Here we report the identification of 165 thioredoxin-like family members across 89 different plasmid systems. Using phylogenetic analysis, all but nine family members were categorized into thioredoxin-like subfamilies. In addition, we discuss the diversity, conservation, and putative roles of thioredoxin-like proteins in plasmid systems, which include homologs of DsbA, DsbB, DsbC, DsbD, DsbG, and CcmG from Escherichia coli, TlpA from Bradyrhizobium japonicum, Com1 from Coxiella burnetii, as well as TrbB and TraF from plasmid F, and the absolute conservation of a disulfide isomerase in plasmids containing homologs of the transfer proteins TraH, TraN, and TraU.