FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells.
Ontology highlight
ABSTRACT: Thioredoxin-interacting protein (TXNIP) has emerged as an important factor in pancreatic beta cell biology, and tight regulation of TXNIP levels is necessary for beta cell survival. However, the mechanisms regulating TXNIP expression have only started to be elucidated. The forkhead boxO1 transcription factor (FOXO1) has been reported to up-regulate TXNIP expression in neurons and endothelial cells but to down-regulate TXNIP in liver, and the effects on beta cells have remained unknown. We now have found that FOXO1 binds to the TXNIP promoter in vivo in human islets and INS-1 beta cells and significantly decreases TXNIP expression. TXNIP promoter deletion analyses revealed that an E-box motif conferring carbohydrate response element-binding protein (ChREBP)-mediated, glucose-induced TXNIP expression is necessary and sufficient for this effect, and electromobility shift assays confirmed FOXO1 binding to this site. Moreover, FOXO1 blocked glucose-induced TXNIP expression and reduced glucose-induced ChREBP binding at the TXNIP promoter without affecting ChREBP expression or nuclear localization, suggesting that FOXO1 may compete with ChREBP for binding to the TXNIP promoter. In fact, a FOXO1 DNA-binding mutant (FOXO1-H215R) failed to inhibit TXNIP transcription, and the effects were not restricted to TXNIP as FOXO1 also inhibited transcription of other ChREBP target genes such as liver pyruvate kinase. Together, these results demonstrate that FOXO1 inhibits beta cell TXNIP transcription and suggest that FOXO1 confers this inhibition by interfering with ChREBP DNA binding at target gene promoters. Our findings thereby reveal a novel gene regulatory mechanism and a previously unappreciated cross-talk between FOXO1 and ChREBP, two major metabolic signaling pathways.
SUBMITTER: Kibbe C
PROVIDER: S-EPMC3743491 | biostudies-literature | 2013 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA