Unknown

Dataset Information

0

A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae.


ABSTRACT: The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine polymerization and incorporation into the spore wall have not been identified. A synthetic gene array approach to identify new genes involved in outer spore wall synthesis revealed an interconnected network influencing dityrosine assembly. This network is highly redundant both for genes of different activities that compensate for the loss of each other and for related genes of overlapping activity. Several of the genes in this network have paralogs in the yeast genome and deletion of entire paralog sets is sufficient to severely reduce dityrosine fluorescence. Solid-state NMR analysis of partially purified outer spore walls identifies a novel component in spore walls from wild type that is absent in some of the paralog set mutants. Localization of gene products identified in the screen reveals an unexpected role for lipid droplets in outer spore wall formation.

SUBMITTER: Lin CP 

PROVIDER: S-EPMC3744438 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

A highly redundant gene network controls assembly of the outer spore wall in S. cerevisiae.

Lin Coney Pei-Chen CP   Kim Carey C   Smith Steven O SO   Neiman Aaron M AM  

PLoS genetics 20130815 8


The spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine. Though the synthesis and export pathways for dityrosine have been described, genes directly involved in dityrosine pol  ...[more]

Similar Datasets

| S-EPMC4751596 | biostudies-literature
| S-EPMC5714454 | biostudies-literature
| S-EPMC9242858 | biostudies-literature
| S-EPMC517519 | biostudies-literature
| S-EPMC2895233 | biostudies-other
2007-12-23 | GSE7393 | GEO
| S-EPMC5612118 | biostudies-literature
| S-EPMC178202 | biostudies-other
| S-EPMC1194906 | biostudies-literature
| S-EPMC2258198 | biostudies-literature