Unknown

Dataset Information

0

Bayesian Gaussian Copula Factor Models for Mixed Data.


ABSTRACT: Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.

SUBMITTER: Murray JS 

PROVIDER: S-EPMC3753118 | biostudies-literature | 2013 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bayesian Gaussian Copula Factor Models for Mixed Data.

Murray Jared S JS   Dunson David B DB   Carin Lawrence L   Lucas Joseph E JE  

Journal of the American Statistical Association 20130601 502


Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal d  ...[more]

Similar Datasets

| S-EPMC7614421 | biostudies-literature
| S-EPMC7756188 | biostudies-literature
| S-EPMC7652264 | biostudies-literature
| S-EPMC7166149 | biostudies-literature
| S-EPMC4055564 | biostudies-literature
| S-EPMC3081790 | biostudies-literature
| S-EPMC6916355 | biostudies-literature
| S-EPMC8654344 | biostudies-literature
| S-EPMC6108519 | biostudies-literature
| S-EPMC7891623 | biostudies-literature