Unknown

Dataset Information

0

Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs.


ABSTRACT:

Motivation

Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability and representation issues.

Results

We present RNA-Seq models and associated inference algorithms based on the concept of probabilistic splice graphs, which alleviate these issues. We prove that our models are often identifiable and demonstrate that our inference methods for quantification and differential processing detection are efficient and accurate.

Availability

Software implementing our methods is available at http://deweylab.biostat.wisc.edu/psginfer.

Contact

cdewey@biostat.wisc.edu

Supplementary information

Supplementary data are available at Bioinformatics online.

SUBMITTER: LeGault LH 

PROVIDER: S-EPMC3753571 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs.

LeGault Laura H LH   Dewey Colin N CN  

Bioinformatics (Oxford, England) 20130711 18


<h4>Motivation</h4>Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability  ...[more]

Similar Datasets

| S-EPMC8337008 | biostudies-literature
| S-EPMC3089446 | biostudies-literature
| S-EPMC3358658 | biostudies-literature
| S-EPMC7477012 | biostudies-literature
| S-EPMC6247705 | biostudies-literature
| S-EPMC4120145 | biostudies-literature
| S-EPMC8123109 | biostudies-literature
| S-EPMC4908322 | biostudies-literature
| S-EPMC4054007 | biostudies-other
| S-EPMC4280593 | biostudies-literature