Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
Ontology highlight
ABSTRACT: Cross-tolerance and antagonistic pleiotropy have been observed between different complex phenotypes in microbial systems. These relationships between adaptive landscapes are important for the design of industrially relevant strains, which are generally subjected to multiple stressors. In our previous work, we evolved Escherichia coli for enhanced tolerance to the biofuel n-butanol and discovered a molecular mechanism of n-butanol tolerance that also conferred tolerance to the cationic antimicrobial peptide polymyxin B in one specific lineage (green fluorescent protein [GFP] labeled) in the evolved population. In this work, we aim to identify additional mechanisms of n-butanol tolerance in an independent lineage (yellow fluorescent protein [YFP] labeled) from the same evolved population and to further explore potential cross-tolerance and antagonistic pleiotropy between n-butanol tolerance and other industrially relevant stressors. Analysis of the transcriptome data of the YFP-labeled mutants allowed us to discover additional membrane-related and osmotic stress-related genes that confer n-butanol tolerance in E. coli. Interestingly, the n-butanol resistance mechanisms conferred by the membrane-related genes appear to be specific to n-butanol and are in many cases antagonistic with isobutanol and ethanol. Furthermore, the YFP-labeled mutants showed cross-tolerance between n-butanol and osmotic stress, while the GFP-labeled mutants showed antagonistic pleiotropy between n-butanol and osmotic stress tolerance.
SUBMITTER: Reyes LH
PROVIDER: S-EPMC3753956 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA