Unknown

Dataset Information

0

Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending.


ABSTRACT: Gravitropism is a complex process involving a series of physiological pathways. Despite ongoing research, gravitropism sensing and response mechanisms are not well understood. To identify the key transcripts and corresponding pathways in gravitropism, a whole-genome microarray approach was used to analyze transcript abundance in the shoot base of rice (Oryza sativa sp. japonica) at 0.5 h and 6 h after gravistimulation by horizontal reorientation. Between upper and lower flanks of the shoot base, 167 transcripts at 0.5 h and 1202 transcripts at 6 h were discovered to be significantly different in abundance by 2-fold. Among these transcripts, 48 were found to be changed both at 0.5 h and 6 h, while 119 transcripts were only changed at 0.5 h and 1154 transcripts were changed at 6 h in association with gravitropism. MapMan and PageMan analyses were used to identify transcripts significantly changed in abundance. The asymmetric regulation of transcripts related to phytohormones, signaling, RNA transcription, metabolism and cell wall-related categories between upper and lower flanks were demonstrated. Potential roles of the identified transcripts in gravitropism are discussed. Our results suggest that the induction of asymmetrical transcription, likely as a consequence of gravitropic reorientation, precedes gravitropic bending in the rice shoot base.

SUBMITTER: Hu L 

PROVIDER: S-EPMC3764065 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending.

Hu Liwei L   Mei Zhiling Z   Zang Aiping A   Chen Haiying H   Dou Xianying X   Jin Jing J   Cai Weiming W  

PloS one 20130905 9


Gravitropism is a complex process involving a series of physiological pathways. Despite ongoing research, gravitropism sensing and response mechanisms are not well understood. To identify the key transcripts and corresponding pathways in gravitropism, a whole-genome microarray approach was used to analyze transcript abundance in the shoot base of rice (Oryza sativa sp. japonica) at 0.5 h and 6 h after gravistimulation by horizontal reorientation. Between upper and lower flanks of the shoot base,  ...[more]

Similar Datasets

2014-06-12 | E-GEOD-58417 | biostudies-arrayexpress
2014-06-12 | GSE58417 | GEO
| S-EPMC11307935 | biostudies-literature
| S-EPMC8034668 | biostudies-literature
| S-EPMC7323772 | biostudies-literature
| S-EPMC3991735 | biostudies-literature
| PRJEB14074 | ENA
2016-03-23 | E-GEOD-72985 | biostudies-arrayexpress
2009-10-30 | E-GEOD-18696 | biostudies-arrayexpress
| S-EPMC4755197 | biostudies-literature