Unknown

Dataset Information

0

Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (A?) peptide aggregation.


ABSTRACT: Probing the conformational changes of amyloid beta (A?) peptide aggregation is challenging owing to the vast heterogeneity of the resulting soluble aggregates. To investigate the formation of these aggregates in solution, we designed an MS-based biophysical approach and applied it to the formation of soluble aggregates of the A?42 peptide, the proposed causative agent in Alzheimer's disease. The approach incorporates pulsed hydrogen-deuterium exchange coupled with MS analysis. The combined approach provides evidence for a self-catalyzed aggregation with a lag phase, as observed previously by fluorescence methods. Unlike those approaches, pulsed hydrogen-deuterium exchange does not require modified A?42 (e.g., labeling with a fluorophore). Furthermore, the approach reveals that the center region of A?42 is first to aggregate, followed by the C and N termini. We also found that the lag phase in the aggregation of soluble species is affected by temperature and Cu(2+) ions. This MS approach has sufficient structural resolution to allow interrogation of A? aggregation in physiologically relevant environments. This platform should be generally useful for investigating the aggregation of other amyloid-forming proteins and neurotoxic soluble peptide aggregates.

SUBMITTER: Zhang Y 

PROVIDER: S-EPMC3767558 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation.

Zhang Ying Y   Rempel Don L DL   Zhang Jun J   Sharma Anuj K AK   Mirica Liviu M LM   Gross Michael L ML  

Proceedings of the National Academy of Sciences of the United States of America 20130819 36


Probing the conformational changes of amyloid beta (Aβ) peptide aggregation is challenging owing to the vast heterogeneity of the resulting soluble aggregates. To investigate the formation of these aggregates in solution, we designed an MS-based biophysical approach and applied it to the formation of soluble aggregates of the Aβ42 peptide, the proposed causative agent in Alzheimer's disease. The approach incorporates pulsed hydrogen-deuterium exchange coupled with MS analysis. The combined appro  ...[more]

Similar Datasets

| S-EPMC5644351 | biostudies-literature
| S-EPMC4761447 | biostudies-literature
| S-EPMC5358797 | biostudies-literature
| S-EPMC2779575 | biostudies-literature
| S-EPMC2757243 | biostudies-literature
| S-EPMC6013392 | biostudies-literature
| S-EPMC5907500 | biostudies-literature
| S-EPMC4782220 | biostudies-literature
| S-EPMC5054352 | biostudies-literature
| S-EPMC5446394 | biostudies-literature