Unknown

Dataset Information

0

STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy.


ABSTRACT: The intracellular concentration of chloride ([Cl(-)]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl(-)]i for its activation of Na-K-2 Cl(-)co-transporters (NKCC) and inhibition of K-Cl(-)co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl(-)]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl(-)]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl(-)]i in hippocampal neurons.

SUBMITTER: Yang L 

PROVIDER: S-EPMC3772887 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy.

Yang Libai L   Cai Xiaodong X   Zhou Jueqian J   Chen Shuda S   Chen Yishu Y   Chen Ziyi Z   Wang Qian Q   Fang Ziyan Z   Zhou Liemin L  

PloS one 20130913 9


The intracellular concentration of chloride ([Cl(-)]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl(-)]i for its activation of Na-K-2 Cl(-)co-transporters (NKCC) and inhibition of K-Cl(-)co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However  ...[more]

Similar Datasets

| S-EPMC2660421 | biostudies-literature
| S-EPMC3140558 | biostudies-literature
| S-EPMC5757652 | biostudies-literature
| S-EPMC2543070 | biostudies-literature
| S-EPMC4200278 | biostudies-literature
| S-EPMC4067202 | biostudies-literature
| S-EPMC6209126 | biostudies-literature
| S-EPMC5813227 | biostudies-literature
| S-EPMC7336357 | biostudies-literature
| S-EPMC8101130 | biostudies-literature