Unknown

Dataset Information

0

In silico modeling of Itk activation kinetics in thymocytes suggests competing positive and negative IP4 mediated feedbacks increase robustness.


ABSTRACT: The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains. In thymocytes, low-dose IP4 binding to the Itk PH domain surprisingly promoted and high-dose IP4 inhibited PIP3 binding of Itk PH domains. However, the mechanisms that underlie the regulation of membrane recruitment of Itk by IP4 and PIP3 remain unclear. The distinct Itk PH domain ability to oligomerize is consistent with a cooperative-allosteric mode of IP4 action. However, other possibilities cannot be ruled out due to difficulties in quantitatively measuring the interactions between Itk, IP4 and PIP3, and in generating non-oligomerizing Itk PH domain mutants. This has hindered a full mechanistic understanding of how IP4 controls Itk function. By combining experimentally measured kinetics of PLC?1 phosphorylation by Itk with in silico modeling of multiple Itk signaling circuits and a maximum entropy (MaxEnt) based computational approach, we show that those in silico models which are most robust against variations of protein and lipid expression levels and kinetic rates at the single cell level share a cooperative-allosteric mode of Itk regulation by IP4 involving oligomeric Itk PH domains at the plasma membrane. This identifies MaxEnt as an excellent tool for quantifying robustness for complex TCR signaling circuits and provides testable predictions to further elucidate a controversial mechanism of PIP3 signaling.

SUBMITTER: Mukherjee S 

PROVIDER: S-EPMC3774804 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

In silico modeling of Itk activation kinetics in thymocytes suggests competing positive and negative IP4 mediated feedbacks increase robustness.

Mukherjee Sayak S   Rigaud Stephanie S   Seok Sang-Cheol SC   Fu Guo G   Prochenka Agnieszka A   Dworkin Michael M   Gascoigne Nicholas R J NR   Vieland Veronica J VJ   Sauer Karsten K   Das Jayajit J  

PloS one 20130916 9


The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains. In thymocytes,  ...[more]

Similar Datasets

| S-EPMC4433242 | biostudies-literature
| S-EPMC2585365 | biostudies-literature
| S-EPMC4303931 | biostudies-literature
| S-EPMC3102369 | biostudies-literature
| S-EPMC6026832 | biostudies-literature
| S-EPMC6923358 | biostudies-literature
| S-EPMC3362677 | biostudies-literature
| S-EPMC3782038 | biostudies-literature
| S-EPMC4453545 | biostudies-literature
| S-EPMC7518820 | biostudies-literature