Association between DNA methyltransferases 3B gene polymorphisms and the susceptibility to acute myeloid leukemia in Chinese Han population.
Ontology highlight
ABSTRACT: DNMT3B plays a crucial role in the generation of aberrant methylation during carcinogenesis. Polymorphisms in the DNMT3B gene may influence the DNA methylation enzymatic activity of DNMT3B, thereby modulating the susceptibility to AML. Thus, we investigated the association between SNPs in the DNMT3Bgene and their haplotypes with the risk of AML in the Chinese Han population. The DNMT3B genotype was determined by HRM in 317 de novo AML patients and 406 healthy control subjects matched for age and gender. Among the 5 SNPs investigated in this study, rs2424913 demonstrated no polymorphisms in the Chinese Han populations, rs1569686 and rs2424908 were significantly associated with AML risk. The GG genotype of rs1569686 was associated with increased AML risk (OR: 5.76; 95%CI: 2.60-12.73; P<0.01) compared with the TT genotype, and individuals with a G allele had a significantly increased risk (OR: 1.89; 95%CI: 1.41-2.52; P<0.01) for AML compared with those harboring a C allele, this polymorphism can predict the risk of AML in a minority of patients. While the CC genotype of rs2424908 appeared to reduce the AML risk (OR: 0.57; 95%CI: 0.36-0.91; P=0.01) compared with the TT genotype, individuals with a C allele were associated with a lower risk (OR: 0.79, 95%CI: 0.64-0.97, P=0.03) for developing AML compared with those harboring a T allele. The other 2 SNPs, rs6087990 and rs6119954, had no significant association with AML risk in the study population. The CGGT, CTAT, TGAT, and CGAT haplotypes of rs6087990, rs1569686, rs6119954, and rs2424908 appeared to significantly increase the AML risk, and the TTGC haplotype appeared to significantly reduce the risk. These results suggest that DNMT3B polymorphisms may contribute to the genetic susceptibility to AML; in particular, the G allele of rs1569686 serves as a risk factor for AML, whereas the C allele of rs2424908 represents a potential protective factor.
SUBMITTER: Zheng Q
PROVIDER: S-EPMC3775800 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA