Project description:Cerebral palsy is the most common disease in children associated with lifelong disability in many countries. Clinical research has demonstrated that traditional physiotherapy and rehabilitation therapies cannot alone cure cerebral palsy. Stem cell transplantation is an emerging therapy that has been applied in clinical trials for a variety of neurological diseases because of the regenerative and unlimited proliferative capacity of stem cells. In this review, we summarize the design schemes and results of these clinical trials. Our findings reveal great differences in population characteristics, stem cell types and doses, administration methods, and evaluation methods among the included clinical trials. Furthermore, we also assess the safety and efficacy of these clinical trials. We anticipate that our findings will advance the rational development of clinical trials of stem cell therapy for cerebral palsy and contribute to the clinical application of stem cells.
Project description:Complex circuitry and limited regenerative power make central nervous system (CNS) disorders the most challenging and difficult for functional repair. With elusive disease mechanisms, traditional surgical and medical interventions merely slow down the progression of the neurodegenerative diseases. However, the number of neurons still diminishes in many patients. Recently, stem cell therapy has been proposed as a viable option. Mesenchymal stem cells (MSCs), a widely-studied human adult stem cell population, have been discovered for more than 20 years. MSCs have been found all over the body and can be conveniently obtained from different accessible tissues: bone marrow, blood, and adipose and dental tissue. MSCs have high proliferative and differentiation abilities, providing an inexhaustible source of neurons and glia for cell replacement therapy. Moreover, MSCs also show neuroprotective effects without any genetic modification or reprogramming. In addition, the extraordinary immunomodulatory properties of MSCs enable autologous and heterologous transplantation. These qualities heighten the clinical applicability of MSCs when dealing with the pathologies of CNS disorders. Here, we summarize the latest progress of MSC experimental research as well as human clinical trials for neural and retinal diseases. This review article will focus on multiple sclerosis, spinal cord injury, autism, glaucoma, retinitis pigmentosa and age-related macular degeneration.
Project description:Due to improved phenotyping and genetic characterization, the field of 'incurable' and 'blinding' inherited retinal diseases (IRDs) has moved substantially forward. Decades of ascertainment of IRD patient data from Philadelphia and Toronto centers illustrate the progress from Mendelian genetic types to molecular diagnoses. Molecular genetics have been used not only to clarify diagnoses and to direct counseling but also to enable the first clinical trials of gene-based treatment in these diseases. An overview of the recent reports of gene augmentation clinical trials by subretinal injections is used to reflect on the reasons why there has been limited success in this early venture into therapy. These first-in human experiences have taught that there is a need for advancing the techniques of delivery of the gene products - not only for refining further subretinal trials, but also for evaluating intravitreal delivery. Candidate IRDs for intravitreal gene delivery are then suggested to illustrate some of the disorders that may be amenable to improvement of remaining central vision with the least photoreceptor trauma. A more detailed understanding of the human IRDs to be considered for therapy and the calculated potential for efficacy should be among the routine prerequisites for initiating a clinical trial.
Project description:The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.
Project description:Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing radiation, however, RT maintains largely palliative due to radioresistance. Factors such as hypoxia, the radiosensitivity of immune cells, and cancer stem cells (CSCs) all come into play in influencing the significant impact of radioresistance in the irradiated tumor microenvironment (TME). Due to the substantial advances in the treatment of malignant tumors, a promising approach is the genetically modified T cells with chimeric antigen receptors (CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related markers would eliminate radioresistant solid tumors. But solid tumors that support an immune deserted TME, are described as immunosuppressive and typically fail to respond to CAR-T cell therapy. And RT could overcome these immunosuppressive features; thus, growing evidence supports the combination of RT with CAR-T cell therapy. In this review, we provide a deep insight into the radioresistance mechanisms, advances, and barriers of CAR-T cells in response to solid tumors within TME. Therefore, we focus on how the combination strategy can be used to eliminate these barriers. Finally, we show the challenges of this therapeutic partnership.
Project description:Stem cell therapy is a current world-wide topic in medical science. Various therapies have been approved based on their effectiveness and put into practical use. In Japan, research and development-related stem cell therapy, generally referred to as regenerative medicine, has been led by the government. The national scheme started in 2002, and support for the transition to clinical trials has been accelerating since 2011. Of the initial 18 projects that were accepted in the budget for preclinical research, 15 projects have begun clinical trials so far. These include the transplantation of retinal, cardiac, and dopamine-producing cells differentiated from human induced pluripotent stem (iPS) cells and hepatocyte-like cells differentiated from human embryonic stem (ES) cells. The distinctive feature of the stem cell research in Japan is the use of iPS cells. A national framework was also been set-up to attain the final goal: health insurance coverage. Now, insurance covers cell transplantation therapies for the repair and recovery of damaged skin, articular cartilage, and stroke as well as therapies introduced from abroad, such as allogeneic mesenchymal stem cells for graft-versus-host disease and chimeric antigen receptor-T (CAR-T) cell therapy. To prepare this review, original information was sought from Japanese authentic websites, which are reliable but a little hard to access due to the fact of multiple less-organized databases and the language barrier. Then, each fact was corroborated by citing its English version or publication in international journals as much as possible. This review provides a summary of progress over the past decade under the national program and a state-of-the-art factual view of research activities, government policy, and regulation in Japan for the realization of stem cell therapy.
Project description:Background and objectiveStem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT.MethodsAn extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected.Key content and findingsIn vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection.ConclusionsSCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Project description:The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs.
Project description:Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.
Project description:With the global escalation of the aging process, the number of patients with bone diseases is increasing year by year. Currently, there are limited effective treatments for bone diseases. Exosome, as a vital medium in cell-cell communication, can mediate tissue metabolism through the paracrine transmission of various cargos (proteins, nucleic acids, lipids, etc.) carried by itself. Recently, an increasing number of researchers have proven that exosomes play essential roles in the formation, metabolism, and pathological changes of bone and cartilage. Because exosomes have the advantages of small size, rich sources, and low immunogenicity, they can be used not only as substitutes for the traditional treatment of bone diseases, but also as biomarkers for the diagnosis of bone diseases. This paper reviews the research progress of several kinds of cells derived-exosomes in bone diseases and provides a theoretical basis for further research and clinical application of exosomes in bone diseases in the future.