Unknown

Dataset Information

0

Role of caveolae in shear stress-mediated endothelium-dependent dilation in coronary arteries.


ABSTRACT:

Aims

Caveolae are membrane microdomains where important signalling pathways are assembled and molecular effects transduced. In this study, we hypothesized that shear stress-mediated vasodilation (SSD) of mouse small coronary arteries (MCA) is caveolae-dependent.

Methods and results

MCA (80-150 μm) isolated from wild-type (WT) and caveolin-1 null (Cav-1(-/-)) mice were subjected to physiological levels of shear stress (1-25 dynes/cm(2)) with and without pre-incubation of inhibitors of nitric oxide synthase (L-NAME), cyclooxygenase (indomethacin, INDO), or cytochrome P450 epoxygenase (SKF 525A). SSD was endothelium-dependent in WT and Cav-1(-/-) coronaries but that in Cav-1(-/-) was significantly diminished compared with WT. Pre-incubation with L-NAME, INDO, or SKF 525A significantly reduced SSD in WT but not in Cav-1(-/-) mice. Vessels from the soluble epoxide hydrolase null (Ephx2(-/-)) mice showed enhanced SSD, which was further augmented by the presence of arachidonic acid. In donor-detector-coupled vessel experiments, Cav-1(-/-) donor vessels produced diminished dilation in WT endothelium-denuded detector vessels compared with WT donor vessels. Shear stress elicited a robust intracellular Ca(2+) increase in vascular endothelial cells isolated from WT but not those from Cav-1(-/-) mice.

Conclusion

Integrity of caveolae is critical for endothelium-dependent SSD in MCA. Cav-1(-/-) endothelium is deficient in shear stress-mediated generation of vasodilators including NO, prostaglandins, and epoxyeicosatrienoic acids. Caveolae plays a critical role in endothelial signal transduction from shear stress to vasodilator production and release.

SUBMITTER: Chai Q 

PROVIDER: S-EPMC3778958 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8455396 | biostudies-literature
| S-EPMC3193832 | biostudies-other
| S-EPMC6620684 | biostudies-literature
| S-EPMC9787166 | biostudies-literature
| S-EPMC4222908 | biostudies-literature
| S-EPMC1575339 | biostudies-other
| S-EPMC2966339 | biostudies-other
| S-EPMC7082042 | biostudies-literature
| S-EPMC3098656 | biostudies-literature