Unknown

Dataset Information

0

Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways.


ABSTRACT: Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1) chemical interaction between drugs, (2) protein interactions between drugs' targets, and (3) target enrichment of KEGG pathways. A benchmark dataset was constructed, consisting of 121 confirmed effective combinations and 605 random combinations. Each drug combination was represented by 465 features derived from the aforementioned three properties. Some feature selection techniques, including Minimum Redundancy Maximum Relevance and Incremental Feature Selection, were adopted to extract the key features. Random forest model was built with its performance evaluated by 5-fold cross-validation. As a result, 55 key features providing the best prediction result were selected. These important features may help to gain insights into the mechanisms of drug combinations, and the proposed prediction model could become a useful tool for screening possible drug combinations.

SUBMITTER: Chen L 

PROVIDER: S-EPMC3780555 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways.

Chen Lei L   Li Bi-Qing BQ   Zheng Ming-Yue MY   Zhang Jian J   Feng Kai-Yan KY   Cai Yu-Dong YD  

BioMed research international 20130905


Drug combinatorial therapy could be more effective in treating some complex diseases than single agents due to better efficacy and reduced side effects. Although some drug combinations are being used, their underlying molecular mechanisms are still poorly understood. Therefore, it is of great interest to deduce a novel drug combination by their molecular mechanisms in a robust and rigorous way. This paper attempts to predict effective drug combinations by a combined consideration of: (1) chemica  ...[more]

Similar Datasets

| S-EPMC4423955 | biostudies-literature
| S-EPMC5855689 | biostudies-other
| S-EPMC4730876 | biostudies-literature
| S-EPMC2881361 | biostudies-literature
| S-EPMC8098026 | biostudies-literature
| S-EPMC3838811 | biostudies-literature
| S-EPMC5039391 | biostudies-literature
| S-EPMC4029371 | biostudies-literature
| S-EPMC8055051 | biostudies-literature
| S-EPMC4019905 | biostudies-other