Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments.
Ontology highlight
ABSTRACT: Design of experiments (DOE) is a systematic and cost-effective approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response can be measured in few experiments. Herein, we describe the use of statistical DOE to improve a few of the analytical figures of merit of the infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source for mass spectrometry. In a typical experiment, bovine cytochrome c was ionized via electrospray, and equine cytochrome c was desorbed and ionized by IR-MALDESI such that the ratio of equine:bovine was used as a measure of the ionization efficiency of IR-MALDESI. This response was used to rank the importance of seven source parameters including flow rate, laser fluence, laser repetition rate, ESI emitter to mass spectrometer inlet distance, sample stage height, sample plate voltage, and the sample to mass spectrometer inlet distance. A screening fractional factorial DOE was conducted to designate which of the seven parameters induced the greatest amount of change in the response. These important parameters (flow rate, stage height, sample to mass spectrometer inlet distance, and laser fluence) were then studied at higher resolution using a full factorial DOE to obtain the globally optimized combination of parameter settings. The optimum combination of settings was then compared with our previously determined settings to quantify the degree of improvement in detection limit. The limit of detection for the optimized conditions was approximately 10 attomoles compared with 100 femtomoles for the previous settings, which corresponds to a four orders of magnitude improvement in the detection limit of equine cytochrome c.
SUBMITTER: Barry JA
PROVIDER: S-EPMC3781580 | biostudies-literature | 2011 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA