Unknown

Dataset Information

0

Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects.


ABSTRACT: Derivation of cardiomyocytes from induced pluripotent stem cells (iPS-CMs) allowed us to probe the Ca(2+)-signaling parameters of human iPS-CMs from healthy- and catecholaminergic polymorphic ventricular tachycardia (CPVT1)-afflicted individuals carrying a novel point mutation p.F2483I in ryanodine receptors (RyR2). iPS-CMs were dissociated on day 30-40 of differentiation and patch-clamped within 3-6 days. Calcium currents (ICa) averaged ?8pA/pF in control and mutant iPS-CMs. ICa-induced Ca(2+)-transients in control and mutant cells had bell-shaped voltage-dependence similar to that of ICa, consistent with Ca(2+)-induced Ca(2+)-release (CICR) mechanism. The ratio of ICa-activated to caffeine-triggered Ca(2+)-transients was ?0.3 in both cell types. Caffeine-induced Ca(2+)-transients generated significantly smaller Na(+)-Ca(2+) exchanger current (INCX) in mutant cells, reflecting their smaller Ca(2+)-stores. The gain of CICR was voltage-dependent as in adult cardiomyocytes. Adrenergic agonists enhanced ICa, but differentially altered the CICR gain, diastolic Ca(2+), and Ca(2+)-sparks in mutant cells. The mutant cells, when Ca(2+)-overloaded, showed longer and wandering Ca(2+)-sparks that activated adjoining release sites, had larger CICR gain at -30mV yet smaller Ca(2+)-stores. We conclude that control and mutant iPS-CMs express the adult cardiomyocyte Ca(2+)-signaling phenotype. RyR2 F2483I mutant myocytes have aberrant unitary Ca(2+)-signaling, smaller Ca(2+)-stores, higher CICR gains, and sensitized adrenergic regulation, consistent with functionally altered Ca(2+)-release profile of CPVT syndrome.

SUBMITTER: Zhang XH 

PROVIDER: S-EPMC3781932 | biostudies-literature | 2013 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects.

Zhang X-H XH   Haviland S S   Wei H H   Sarić T T   Fatima A A   Hescheler J J   Cleemann L L   Morad M M  

Cell calcium 20130517 2


Derivation of cardiomyocytes from induced pluripotent stem cells (iPS-CMs) allowed us to probe the Ca(2+)-signaling parameters of human iPS-CMs from healthy- and catecholaminergic polymorphic ventricular tachycardia (CPVT1)-afflicted individuals carrying a novel point mutation p.F2483I in ryanodine receptors (RyR2). iPS-CMs were dissociated on day 30-40 of differentiation and patch-clamped within 3-6 days. Calcium currents (ICa) averaged ∼8pA/pF in control and mutant iPS-CMs. ICa-induced Ca(2+)-  ...[more]

Similar Datasets

| S-EPMC6221297 | biostudies-literature
| S-EPMC8366453 | biostudies-literature
| S-EPMC2796688 | biostudies-literature
| S-EPMC5924967 | biostudies-literature
| S-EPMC7274838 | biostudies-literature
| S-EPMC7046813 | biostudies-literature
| S-EPMC6206886 | biostudies-literature
| S-EPMC2904954 | biostudies-literature
| S-EPMC6825949 | biostudies-literature
| S-EPMC7519379 | biostudies-literature