Unknown

Dataset Information

0

A spastic paraplegia mouse model reveals REEP1-dependent ER shaping.


ABSTRACT: Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We generated the corresponding mouse model to study the underlying cellular pathology. Mice with heterozygous deletion of exon 2 in Reep1 displayed a gait disorder closely resembling SPG31 in humans. Homozygous exon 2 deletion resulted in the complete loss of REEP1 and a more severe phenotype with earlier onset. At the molecular level, we demonstrated that REEP1 is a neuron-specific, membrane-binding, and membrane curvature-inducing protein that resides in the ER. We further show that Reep1 expression was prominent in cortical motor neurons. In REEP1-deficient mice, these neurons showed reduced complexity of the peripheral ER upon ultrastructural analysis. Our study connects proper neuronal ER architecture to long-term axon survival.

SUBMITTER: Beetz C 

PROVIDER: S-EPMC3784524 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly  ...[more]

Similar Datasets

| S-EPMC7541344 | biostudies-literature
| S-EPMC2846052 | biostudies-literature
| S-EPMC2492855 | biostudies-literature
| S-EPMC2841798 | biostudies-literature
| S-EPMC1559498 | biostudies-literature
| S-EPMC7325443 | biostudies-literature
| S-EPMC4101104 | biostudies-literature
| S-EPMC5897212 | biostudies-literature
| S-EPMC3266795 | biostudies-literature
| S-EPMC6078631 | biostudies-literature