Project description:Bone mineral density (BMD) is a major index for diagnosing osteoporosis. PhosSNPs are nonsynonymous SNPs that affect protein phosphorylation. The relevance and significance of phosSNPs to BMD and osteoporosis is unknown. This study aimed to identify and characterize phosSNPs significant for BMD in humans. We conducted a pilot genomewide phosSNP association study for BMD in three independent population samples, involving ?5000 unrelated individuals. We identified and replicated three phosSNPs associated with both spine BMD and hip BMD in Caucasians. Association with hip BMD for one of these phosSNPs, ie, rs6265 (major/minor allele: G/A) in BDNF gene, was also suggested in Chinese. Consistently in both ethnicities, individuals carrying the AA genotype have significantly lower hip BMD than carriers of the GA and GG genotypes. Through in vitro molecular and cellular studies, we found that compared to osteoblastic cells transfected with wild-type BDNF-Val66 (encoded with allele G at rs6265), transfection of variant BDNF-Met66 (encoded with allele A at rs6265) significantly decreased BDNF protein phosphorylation (at amino acid residue T62), expression of osteoblastic genes (OPN, BMP2, and ALP), and osteoblastic activity. The findings are consistent with and explain our prior observations in general human populations. We conclude that phosSNP rs6265, by regulating BDNF protein phosphorylation and osteoblast differentiation, influences hip BMD in humans. This study represents our first endeavor to dissect the functions of phosSNPs in bone, which might stimulate extended large-scale studies on bone or similar studies on other human complex traits and diseases.
Project description:Protein arginine phosphorylation is a recently discovered modification that affects multiple cellular pathways in Gram-positive bacteria. In particular, the phosphorylation of arginine residues by McsB is critical for regulating the cellular stress response. Given that the highly efficient protein arginine phosphatase YwlE prevents arginine phosphorylation under non-stress conditions, we hypothesized that this enzyme negatively regulates arginine phosphorylation and acts as a sensor of cell stress. To evaluate this hypothesis, we developed the first suite of highly potent and specific SO3-amidine-based YwlE inhibitors. With these protein arginine phosphatase-specific probes, we demonstrated that YwlE activity is suppressed by oxidative stress, which consequently increases arginine phosphorylation, thereby inducing the expression of stress-response genes, which is critical for bacterial virulence. Overall, we predict that these novel chemical tools will be widely used to study the regulation of protein arginine phosphorylation in multiple organisms.
Project description:BackgroundGeneralised high bone mass (HBM), associated with features of a mild skeletal dysplasia, has a prevalence of 0.18% in a UK DXA-scanned adult population. We hypothesized that the genetic component of extreme HBM includes contributions from common variants of small effect and rarer variants of large effect, both enriched in an extreme phenotype cohort.MethodsWe performed a genome-wide association study (GWAS) of adults with either extreme high or low BMD. Adults included individuals with unexplained extreme HBM (n = 240) from the UK with BMD Z-scores ≥+3.2, high BMD females from the Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) (n = 1055) with Z-scores +1.5 to +4.0 and low BMD females also part of AOGC (n = 900), with Z-scores -1.5 to -4.0. Following imputation, we tested association between 6,379,332 SNPs and total hip and lumbar spine BMD Z-scores. For potential target genes, we assessed expression in human osteoblasts and murine osteocytes.ResultsWe observed significant enrichment for associations with established BMD-associated loci, particularly those known to regulate endochondral ossification and Wnt signalling, suggesting that part of the genetic contribution to unexplained HBM is polygenic. Further, we identified associations exceeding genome-wide significance between BMD and four loci: two established BMD-associated loci (5q14.3 containing MEF2C and 1p36.12 containing WNT4) and two novel loci: 5p13.3 containing NPR3 (rs9292469; minor allele frequency [MAF] = 0.33%) associated with lumbar spine BMD and 11p15.2 containing SPON1 (rs2697825; MAF = 0.17%) associated with total hip BMD. Mouse models with mutations in either Npr3 or Spon1 have been reported, both have altered skeletal phenotypes, providing in vivo validation that these genes are physiologically important in bone. NRP3 regulates endochondral ossification and skeletal growth, whilst SPON1 modulates TGF-β regulated BMP-driven osteoblast differentiation. Rs9292469 (downstream of NPR3) also showed some evidence for association with forearm BMD in the independent GEFOS sample (n = 32,965). We found Spon1 was highly expressed in murine osteocytes from the tibiae, femora, humeri and calvaria, whereas Npr3 expression was more variable.ConclusionWe report the most extreme-truncate GWAS of BMD performed to date. Our findings, suggest potentially new anabolic bone regulatory pathways that warrant further study.
Project description:Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology.
Project description:Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.
Project description:Low bone mineral density (BMD) is a risk factor for osteoporotic fracture with a high heritability. Previous large scale linkage study in Northern Chinese has identified four significant quantitative trait loci (QTL) for BMD variation on chromosome 2q24, 5q21, 7p21 and 13q21. We performed a replication study of these four QTL in 1,459 Southern Chinese from 306 pedigrees. Successful replication was observed on chromosome 5q21 for femoral neck BMD with a LOD score of 1.38 (nominal p value = 0.006). We have previously identified this locus in a genome scan meta-analysis of BMD variation in a white population. Subsequent QTL-wide gene-based association analysis in 800 subjects with extreme BMD identified CAST and ERAP1 as novel BMD candidate genes (empirical p value of 0.032 and 0.014, respectively). The associations were independently replicated in a Northern European population (empirical p value of 0.01 and 0.004 for CAST and ERAP1, respectively). These findings provide further evidence that 5q21 is a BMD QTL, and CAST and ERAP1 may be associated with femoral neck BMD variation.
Project description:Predicting food web structure in future climates is a pressing goal of ecology. These predictions may be impossible without a solid understanding of the factors that structure current food webs. The most fundamental aspect of food web structure-the relationship between the number of links and species-is still poorly understood. Some species interactions may be physically or physiologically 'forbidden'-like consumption by non-consumer species-with possible consequences for food web structure. We show that accounting for these 'forbidden interactions' constrains the feasible link-species space, in tight agreement with empirical data. Rather than following one particular scaling relationship, food webs are distributed throughout this space according to shared biotic and abiotic features. Our study provides new insights into the long-standing question of which factors determine this fundamental aspect of food web structure.
Project description:The tumor suppressor p53-like protein p63 is required for self-renewal of epidermal tissues. Loss of p63 or exposure to ultraviolet (UV) irradiation triggers terminal differentiation in keratinocytes. However, it remains unclear how p63 diverts epidermal cells from proliferation to terminal differentiation, thereby contributing to successful tissue self-renewal. Here, we used bottom-up proteomics to identify the proteome at the chromatin in normal human epidermal keratinocytes following UV irradiation and p63 depletion. We found that loss of p63 increased DNA damage and that UV irradiation recruited the cyclin-dependent kinase CDK12 and the serine/threonine protein kinase SMG1 to chromatin only in the presence of p63. A post-translational modification analysis of ΔNp63α with mass spectrometry revealed that phosphorylation of T357/S358 and S368 was dependent on SMG1, whereas CDK12 increased the phosphorylation of ΔNp63α at S66/S68 and S301. Indirect phosphorylation of ΔNp63α in the presence of SMG1 enabled ΔNp63α to bind to the tumor suppressor p53-specific DNA recognition sequence, whereas CDK12 rendered ΔNp63α less responsive to UV irradiation and was not required for specific DNA binding. CDK12 and SMG1 are known to regulate the transcription and splicing of RNAs and the decay of nonsense RNAs, respectively, and a subset of p63-specific protein-protein interactions at the chromatin also linked p63 to RNA transcription and decay. We observed that in the absence of p63, UV irradiation resulted in more ORF1p. ORF1p is the first protein product of the intronless non-LTR retrotransposon LINE-1, indicating a derailed surveillance of RNA processing and/or translation. Our results suggest that p63 phosphorylation and transcriptional activation might correspond to altered RNA processing and/or translation to protect proliferating keratinocytes from increased genotoxic stress.
Project description:The Forkhead transcription factor FoxO1 inhibits through its expression in osteoblasts ?-cell proliferation, insulin secretion, and sensitivity. At least part of the FoxO1 metabolic functions result from its ability to suppress the activity of osteocalcin, an osteoblast-derived hormone favoring glucose metabolism and energy expenditure. In searching for mechanisms mediating the metabolic actions of FoxO1, we focused on ATF4, because this transcription factor also affects glucose metabolism through its expression in osteoblasts. We show here that FoxO1 co-localizes with ATF4 in the osteoblast nucleus, and physically interacts with and promotes the transcriptional activity of ATF4. Genetic experiments demonstrate that FoxO1 and ATF4 cooperate to increase glucose levels and decrease glucose tolerance. These effects result from a synergistic effect of the two transcription factors to suppress the activity of osteocalcin through up-regulating expression of the phosphatase catalyzing osteocalcin inactivation. As a result, insulin production by ?-cells and insulin signaling in the muscle, liver and white adipose tissue are compromised and fat weight increases by the FoxO1/ATF4 interaction. Taken together these observations demonstrate that FoxO1 and ATF4 cooperate in osteoblasts to regulate glucose homeostasis.
Project description:IntroductionAs the radiomics technique using texture features in CT is adopted for accessing DXA-equivalent bone mineral density (BMD), this study aims to compare BMD by DXA and predicted BMD to investigate the impact of obesity and central obesity in general patients.Materials and methodsA total of 710 cases (621 patients) obtained from May 6, 2012, to June 30, 2021, were used in the study. We focused both their abdomen & pelvis CT's first lumbar vertebrae axial cuts to predict estimated BMD and bone mineral content (BMC). In each patient's CT, we extracted the largest trabecular region of the L1 vertebral body as a region of interest (ROI) using the gray-level co-occurrence matrices (GLCM) technique, and linear regression was applied to predict the indices. Cases were divided by central obesity/overall obesity and normal group by body mass index (BMI), waist circumference (WC), or index of central obesity (ICO) standard.ResultsThe coefficients were all above 0.73, respectively. P-values from ICO were over 0.05 when the measures were Hip BMD and Hip BMC. In contrast, those from ICO were 0.0131 and 0.0351 when the measures were L1 BMD and L1 BMC, respectively, which show a difference between the two groups.ConclusionsThe CT HU texture analysis method was an effective and economical method for measuring estimated BMD and BMC and evaluating the impact of obesity. We found that central obesity especially exerted an effect on the disturbance of the clinical BMD measurements since groups were significantly different under the ICO standard.