The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins.
Ontology highlight
ABSTRACT: The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.
SUBMITTER: Schaaf CA
PROVIDER: S-EPMC3789803 | biostudies-literature | 2013 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA