Unknown

Dataset Information

0

Effect of change in spindle structure on proliferation inhibition of osteosarcoma cells and osteoblast under simulated microgravity during incubation in rotating bioreactor.


ABSTRACT: In order to study the effect of microgravity on the proliferation of mammalian osteosarcoma cells and osteoblasts, the changes in cell proliferation, spindle structure, expression of MAD2 or BUB1, and effect of MAD2 or BUB1 on the inhibition of cell proliferation is investigated by keeping mammalian osteosarcoma cells and osteoblasts under simulated microgravity in a rotating wall vessel (2D-RWVS) bioreactor. Experimental results indicate that the effect of microgravity on proliferation inhibition, incidence of multipolar spindles, and expression of MAD2 or BUB1 increases with the extension of treatment time. And multipolar cells enter mitosis after MAD2 or BUB1 is knocked down, which leads to the decrease in DNA content, and decrease the accumulation of cells within multipolar spindles. It can therefore be concluded that simulated microgravity can alter the structure of spindle microtubules, and stimulate the formation of multipolar spindles together with multicentrosomes, which causes the overexpression of SAC proteins to block the abnormal cells in metaphase, thereby inhibiting cell proliferation. By clarifying the relationship between cell proliferation inhibition, spindle structure and SAC changes under simulated microgravity, the molecular mechanism and morphology basis of proliferation inhibition induced by microgravity is revealed, which will give experiment and theoretical evidence for the mechanism of space bone loss and some other space medicine problems.

SUBMITTER: Wei L 

PROVIDER: S-EPMC3792057 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of change in spindle structure on proliferation inhibition of osteosarcoma cells and osteoblast under simulated microgravity during incubation in rotating bioreactor.

Wei Lijun L   Diao Yan Y   Qi Jing J   Khokhlov Alexander A   Feng Hui H   Yan Xing X   Li Yu Y  

PloS one 20131007 10


In order to study the effect of microgravity on the proliferation of mammalian osteosarcoma cells and osteoblasts, the changes in cell proliferation, spindle structure, expression of MAD2 or BUB1, and effect of MAD2 or BUB1 on the inhibition of cell proliferation is investigated by keeping mammalian osteosarcoma cells and osteoblasts under simulated microgravity in a rotating wall vessel (2D-RWVS) bioreactor. Experimental results indicate that the effect of microgravity on proliferation inhibiti  ...[more]

Similar Datasets

| S-EPMC3651164 | biostudies-literature
| S-EPMC4685444 | biostudies-literature
| S-EPMC6484313 | biostudies-literature
| S-EPMC9806295 | biostudies-literature
2006-12-31 | GSE4658 | GEO
| S-EPMC8669367 | biostudies-literature
| S-EPMC6520402 | biostudies-literature
| S-EPMC5519018 | biostudies-literature
2013-11-05 | GSE52057 | GEO
| S-EPMC6941968 | biostudies-literature