Cation-? interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C.
Ontology highlight
ABSTRACT: Amphitropic proteins, such as the virulence factor phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis , often depend on lipid-specific recognition of target membranes. However, the recognition mechanisms for zwitterionic lipids, such as phosphatidylcholine, which is enriched in the outer leaflet of eukaryotic cells, are not well understood. A 500 ns long molecular dynamics simulation of PI-PLC at the surface of a lipid bilayer revealed a strikingly high number of interactions between tyrosines at the interfacial binding site and lipid choline groups with structures characteristic of cation-? interactions. Membrane affinities of PI-PLC tyrosine variants mostly tracked the simulation results, falling into two classes: (i) those with minor losses in affinity, Kd(mutant)/Kd(wild-type) ? 5 and (ii) those where the apparent Kd was 50-200 times higher than wild-type. Estimating ??G for these Tyr/PC interactions from the apparent Kd values reveals that the free energy associated with class I is ~1 kcal/mol, comparable to the value predicted by the Wimley-White hydrophobicity scale. In contrast, removal of class II tyrosines has a higher energy cost: ~2.5 kcal/mol toward pure PC vesicles. These higher energies correlate well with the occupancy of the cation-? adducts throughout the MD simulation. Together, these results strongly indicate that PI-PLC interacts with PC headgroups via cation-? interactions with tyrosine residues and suggest that cation-? interactions at the interface may be a mechanism for specific lipid recognition by amphitropic and membrane proteins.
SUBMITTER: Grauffel C
PROVIDER: S-EPMC3797534 | biostudies-literature | 2013 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA