Unknown

Dataset Information

0

Timing of transcriptional quiescence during gametogenesis is controlled by global histone H3K4 demethylation.


ABSTRACT: Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny.

SUBMITTER: Xu M 

PROVIDER: S-EPMC3806484 | biostudies-literature | 2012 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-c  ...[more]

Similar Datasets

| S-EPMC3494965 | biostudies-literature
| S-EPMC2843180 | biostudies-literature
| S-EPMC4225485 | biostudies-literature
| S-EPMC4521839 | biostudies-literature
| S-EPMC4560983 | biostudies-literature
| S-EPMC1173152 | biostudies-literature
| S-EPMC5126570 | biostudies-literature
| S-EPMC3384172 | biostudies-literature
| S-EPMC3416202 | biostudies-literature
| S-EPMC3230325 | biostudies-literature