Project description:In 5 prospectively diagnosed patients with relapsing post-herpes simplex encephalitis (HSE), N-methyl-D-aspartate receptor (NMDAR) antibodies were identified. Antibody synthesis started 1 to 4 weeks after HSE, preceding the neurological relapse. Three of 5 patients improved postimmunotherapy, 1 spontaneously, and 1 has started to improve. Two additional patients with NMDAR antibodies, 9 with unknown neuronal surface antibodies, and 1 with NMDAR and unknown antibodies, were identified during retrospective assessment of 34 HSE patients; the frequency of autoantibodies increased over time (serum, p=0.004; cerebrospinal fluid, p=0.04). The 3 retrospectively identified NMDAR antibody-positive patients also had evidence of relapsing post-HSE. Overall, these findings indicate that HSE triggers NMDAR antibodies and potentially other brain autoimmunity.
Project description:BackgroundAnti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis is a severe autoimmune condition, which typically affects young females. The long-term clinical consequences and brain morphology changes after anti-NMDAR encephalitis are not well known.Case presentationWe present clinical and neuroimaging follow-up data on a 25-year female patient with typically presenting anti-NMDAR encephalitis. Longitudinal analyses of brain morphology were done using 3 T structural magnetic resonance imaging (sMRI) and Freesurfer analysis at the time of diagnosis and after symptomatic remission. The presented case attained good functional recovery after standard immunoglobulin-corticosteroid treatment but elevated serum NMDAR antibody levels persisted. The patient had no symptomatic relapses during a 3-year clinical follow-up. In the baseline brain sMRI scan there were no marked volume changes. However, a follow-up sMRI after 9 months indicated clear volume reductions in frontal cortical regions compared to matched controls with identical sMRI scans.ConclusionsThis case report of anti-NMDAR encephalitis suggests that despite clinical recovery long-term brain morphological changes can develop in the frontal cortex. Longer clinical and imaging follow-up studies are needed to see whether these frontocortical alterations are fully reversible and if not, can they result in trait vulnerabilities for e.g. neuropsychiatric disorders.
Project description:Cotard's syndrome is uncommon psychopathology among patients with psychotic illnesses. Limited cases had been reported regarding the occurrence of this syndrome in anti-NMDAR encephalitis which itself is a relatively new disease that often presents with florid psychotic symptoms. This poses difficulties in differentiating it from a primary psychiatric illness. Late recognition of anti-NMDAR encephalitis can lead to death as it can progress to autonomic instability in its natural course of illness. We report a patient who first presented with psychotic symptoms with initial negative findings from baseline investigations. Further investigation revealed anti NMDAR antibodies in the cerebrospinal fluid. Prompt treatment was initiated and despite early poor response to the first-line treatment with the development of allergic reaction, our patient recovered completely after 1 month of hospitalization. This case report aims to highlight the importance of early detection of anti-NMDAR encephalitis and the possibility of uncommon psychopathology such as Cotard's syndrome occurring in this disease.
Project description:IntroductionIn spite of antiviral treatment, herpes simplex encephalitis (HSE) remains associated with a poor prognosis and often results in neurological impairment. The B cell response in HSE is poorly understood. The objective of this study was to identify, in a patient with HSE, B cell clones in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs) that expanded between two different time points during the course of infection.MethodsCSF cells and PBMCs were sampled from a HSE patient at two time points 5 days apart. B cells were analyzed using single-cell immune profiling (CSF cells) and conventional deep immune repertoire sequencing (PBMCs).ResultsWe identified CSF B cell clones that expanded from time 1 to time 2. Some of these B cell clones could also be found in the peripheral blood. We also report the corresponding B cell receptor (BCR) sequences.ConclusionIn our patient, HSE resulted in an intrathecal B cell response with expanding CSF clones. We report the B cell receptor sequences of several expanding and dominating clones; these sequences can be used to create recombinant antibodies. Even though the antigen specificity of these expanding clones is unknown, our findings suggest that an adaptive immune response in the central nervous system contributes to repelling herpes simplex virus infection in the brain.
Project description:IntroductionA persistent vegetative state (PVS) can be caused by traumatic or non-traumatic brain injury. PVS is a complex clinical condition with numerous complications. Nursing care, medical treatment, and comprehensive rehabilitation are necessary to improve the outcomes of PVS. However, the prognosis remains unsatisfactory. Acupuncture therapy has been used as a rehabilitation strategy to treat patients with PVS in China, showing better results in the recovery of consciousness, intellectual capability, and motor function.Case descriptionWe present the case of a 4-month-long PVS after herpes simplex virus encephalitis (HSVE) in a 3.5-year-old boy who underwent Tongdu Xingshen acupuncture integrated with Western medicine and rehabilitation. The patient regained consciousness post-treatment. His intelligence and motor function gradually recovered after seven treatment sessions.ConclusionTongdu Xingshen acupuncture is a potential complementary therapy to optimize clinical outcomes in PVS.
Project description:Herpes simplex virus 1 (HSV-1) can be responsible for life-threatening HSV encephalitis (HSE). The mortality rate of patients with HSE who do not receive antiviral treatment is 70%, with most survivors suffering from permanent neurological sequelae. The use of intravenous acyclovir together with improved diagnostic technologies such as PCR and magnetic resonance imaging has resulted in a reduction in the mortality rate to close to 20%. However, 70% of surviving patients still do not recover complete neurological functions. Thus, there is an urgent need to develop more effective treatments for a better clinical outcome. It is well recognized that cerebral damage resulting from HSE is caused by viral replication together with an overzealous inflammatory response. Both of these processes constitute potential targets for the development of innovative therapies against HSE. In this review, we discuss recent progress in therapy that may be used to ameliorate the outcome of patients with HSE, with a particular emphasis on immunomodulatory agents. Ideally, the administration of adjunctive immunomodulatory drugs should be initiated during the rise of the inflammatory response, and its duration should be limited in time to reduce undesired effects. This critical time frame should be optimized by the identification of reliable biomarkers of inflammation.
Project description:BackgroundAnti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is one of the most prevalent etiologies of autoimmune encephalitis. Approximately 25% of anti-NMDAR encephalitis cases prove refractory to both first- and second-line treatments, posing a therapeutic dilemma due to the scarcity of evidence-based data for informed decision-making. Intravenous rituximab is commonly administered as a second-line agent; however, the efficacy of its intrathecal administration has rarely been reported.Case summaryWe report two cases of severe anti-NMDAR encephalitis refractory to conventional therapies. These patients presented with acute-onset psychosis progressing to a fulminant picture of encephalitis manifesting with seizures, dyskinesia, and dysautonomia refractory to early initiation of first- and second-line therapeutic agents. Both patients received 25 mg of rituximab administered intrathecally, repeated weekly for a total of four doses, with no reported adverse effects. Improvement began 2-3 days after the first intrathecal administration, leading to a dramatic recovery in clinical status and functional performance. At the last follow-up of 6 months, both patients remain in remission without the need for maintenance immunosuppression.ConclusionOur cases provide evidence supporting the intrathecal administration of rituximab as a therapeutic option for patients with refractory anti-NMDAR encephalitis. Considering the limited penetration of intravenous rituximab into the central nervous system, a plausible argument can be made favoring intrathecal administration as the preferred route or the simultaneous administration of intravenous and intrathecal rituximab. This proposition warrants thorough investigation in subsequent clinical trials.
Project description:Anti-NMDA receptor (NMDAR) encephalitis (NMDARE) is an important treatable cause of autoimmune psychosis in all age-groups, which is sometimes associated with tumors, especially ovarian teratomas. Tuberous sclerosis complex (TSC) is an autosomal dominant inherited neurocutaneous disease predisposing for development of benign tumors. We present a case of a 35-year-old woman with recurrent episodes of schizophrenia-like symptoms. Accidentally, MRI revealed TSC-related brain tumors. NMDAR antibody titers were strongly positive in serum and cerebrospinal fluid. This is the first case describing an overlap of NMDARE and TSC-related brain tumors. A review of brain tumors and NMDARE is given in the supplementary material. Although a causal link seems interesting from a pathophysiological point of view, we are in favor of a coincidence.
Project description:Herpes simplex virus 1 (HSV-1) is responsible for herpes simplex virus encephalitis (HSE), associated with a 70% mortality rate in the absence of treatment. Despite intravenous treatment with acyclovir, mortality remains significant, highlighting the need for new anti-herpetic agents. Herein, we describe a novel neurovirulent recombinant HSV-1 (rHSV-1), expressing the fluorescent tdTomato and Gaussia luciferase (Gluc) enzyme, generated by the Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR-Cas9) system. The Gluc activity measured in the cell culture supernatant was correlated (P = 0.0001) with infectious particles, allowing in vitro monitoring of viral replication kinetics. A significant correlation was also found between brain viral titers and Gluc activity in plasma (R2 = 0.8510, P < 0.0001) collected from BALB/c mice infected intranasally with rHSV-1. Furthermore, evaluation of valacyclovir (VACV) treatment of HSE could also be performed by analyzing Gluc activity in mouse plasma samples. Finally, it was also possible to study rHSV-1 dissemination and additionally to estimate brain viral titers by in vivo imaging system (IVIS). The new rHSV-1 with reporter proteins is not only as a powerful tool for in vitro and in vivo antiviral screening, but can also be used for studying different aspects of HSE pathogenesis.