Unknown

Dataset Information

0

Use of culture geometry to control hypoxia-induced vascular endothelial growth factor secretion from adipose-derived stem cells: optimizing a cell-based approach to drive vascular growth.


ABSTRACT: Adipose-derived stem cells (ADSCs) possess potent angiogenic properties and represent a source for cell-based approaches to delivery of bioactive factors to drive vascularization of tissues. Hypoxic signaling appears to be largely responsible for triggering release of these angiogenic cytokines, including vascular endothelial growth factor (VEGF). Three-dimensional (3D) culture may promote activation of hypoxia-induced pathways, and has furthermore been shown to enhance cell survival by promoting cell-cell interactions while increasing angiogenic potential. However, the development of hypoxia within ADSC spheroids is difficult to characterize. In the present study, we investigated the impact of spheroid size on hypoxia-inducible transcription factor (HIF)-1 activity in spheroid cultures under atmospheric and physiological oxygen conditions using a fluorescent marker. Hypoxia could be induced and modulated by controlling the size of the spheroid; HIF-1 activity increased with spheroid size and with decreasing external oxygen concentration. Furthermore, VEGF secretion was impacted by the hypoxic status of the culture, increasing with elevated HIF-1 activity, up to the point at which viability was compromised. Together, these results suggest the ability to use 3D culture geometry as a means to control output of angiogenic factors from ADSCs, and imply that at a particular environmental oxygen concentration an optimal culture size for cytokine production exists. Consideration of culture geometry and microenvironmental conditions at the implantation site will be important for successful realization of ADSCs as a pro-angiogenic therapy.

SUBMITTER: Skiles ML 

PROVIDER: S-EPMC3807712 | biostudies-literature | 2013 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Use of culture geometry to control hypoxia-induced vascular endothelial growth factor secretion from adipose-derived stem cells: optimizing a cell-based approach to drive vascular growth.

Skiles Matthew L ML   Sahai Suchit S   Rucker Lindsay L   Blanchette James O JO  

Tissue engineering. Part A 20130626 21-22


Adipose-derived stem cells (ADSCs) possess potent angiogenic properties and represent a source for cell-based approaches to delivery of bioactive factors to drive vascularization of tissues. Hypoxic signaling appears to be largely responsible for triggering release of these angiogenic cytokines, including vascular endothelial growth factor (VEGF). Three-dimensional (3D) culture may promote activation of hypoxia-induced pathways, and has furthermore been shown to enhance cell survival by promotin  ...[more]

Similar Datasets

| S-EPMC7260353 | biostudies-literature
| S-EPMC3233029 | biostudies-literature
| S-EPMC4905169 | biostudies-other
| S-EPMC3189303 | biostudies-literature
| S-EPMC5294206 | biostudies-literature
| S-EPMC534742 | biostudies-literature
| S-EPMC3594010 | biostudies-literature
| S-EPMC7281659 | biostudies-literature
| 2073020 | ecrin-mdr-crc
| S-EPMC3380090 | biostudies-literature