Unknown

Dataset Information

0

Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.


ABSTRACT: Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determined the crystal structures of two naturally occurring variants of AvrM, AvrM-A and avrM, and both reveal an L-shaped fold consisting of a tandem duplicated four-helix motif, which displays similarity to the WY domain core in oomycete effectors. In the crystals, both AvrM variants form a dimer with an unusual nonglobular shape. Our functional analysis of AvrM reveals that a hydrophobic surface patch conserved between both variants is required for internalization into plant cells, whereas the C-terminal coiled-coil domain mediates interaction with M. AvrM binding to PIPs is dependent on positive surface charges, and mutations that abrogate PIP binding have no significant effect on internalization, suggesting that AvrM binding to PIPs is not essential for transport of AvrM across the plant membrane. The structure of AvrM and the identification of functionally important surface regions advance our understanding of the molecular mechanisms underlying how effectors enter plant cells and how they are detected by the plant immune system.

SUBMITTER: Ve T 

PROVIDER: S-EPMC3808616 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

Ve Thomas T   Williams Simon J SJ   Catanzariti Ann-Maree AM   Rafiqi Maryam M   Rahman Motiur M   Ellis Jeffrey G JG   Hardham Adrienne R AR   Jones David A DA   Anderson Peter A PA   Dodds Peter N PN   Kobe Bostjan B  

Proceedings of the National Academy of Sciences of the United States of America 20131007 43


Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the resistance protein M in flax (Linum usitatissimum), resulting in effector-triggered immunity. We determin  ...[more]

Similar Datasets

2022-07-13 | GSE207874 | GEO
| S-EPMC5599791 | biostudies-literature
| S-EPMC6103241 | biostudies-literature
| S-EPMC6329965 | biostudies-literature
| S-EPMC3970004 | biostudies-literature
| PRJNA857488 | ENA
| S-EPMC6637871 | biostudies-literature
| S-EPMC6640369 | biostudies-literature
| S-EPMC4282163 | biostudies-literature
| S-EPMC6170375 | biostudies-literature