Unknown

Dataset Information

0

Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.


ABSTRACT: Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light-oxygen-voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms.

SUBMITTER: Liu H 

PROVIDER: S-EPMC3808666 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.

Liu Hongtao H   Wang Qin Q   Liu Yawen Y   Zhao Xiaoying X   Imaizumi Takato T   Somers David E DE   Tobin Elaine M EM   Lin Chentao C  

Proceedings of the National Academy of Sciences of the United States of America 20131007 43


Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by bl  ...[more]

Similar Datasets

| S-EPMC6172471 | biostudies-literature
| S-EPMC5714181 | biostudies-literature
| S-EPMC5219891 | biostudies-literature
| S-EPMC3355346 | biostudies-literature
2016-12-02 | GSE80350 | GEO
| S-EPMC3150455 | biostudies-literature
| S-EPMC10419918 | biostudies-literature
2022-06-13 | GSE201685 | GEO
| S-EPMC356932 | biostudies-literature
| S-EPMC10030363 | biostudies-literature