Unknown

Dataset Information

0

A method for detecting positive growth autocorrelation without marking individuals.


ABSTRACT: In most ecological studies, within-group variation is a nuisance that obscures patterns of interest and reduces statistical power. However, patterns of within-group variability often contain information about ecological processes. In particular, such patterns can be used to detect positive growth autocorrelation (consistent variation in growth rates among individuals in a cohort across time), even in samples of unmarked individuals. Previous methods for detecting autocorrelated growth required data from marked individuals. We propose a method that requires only estimates of within-cohort variance through time, using maximum likelihood methods to obtain point estimates and confidence intervals of the correlation parameter. We test our method on simulated data sets and determine the loss in statistical power due to the inability to identify individuals. We show how to accommodate nonlinear growth trajectories and test the effects of size-dependent mortality on our method's accuracy. The method can detect significant growth autocorrelation at moderate levels of autocorrelation with moderate-sized cohorts (for example, statistical power of 80% to detect growth autocorrelation ? (2)?=?0.5 in a cohort of 100 individuals measured on 16 occasions). We present a case study of growth in the red-eyed tree frog. Better quantification of the processes driving size variation will help ecologists improve predictions of population dynamics. This work will help researchers to detect growth autocorrelation in cases where marking is logistically infeasible or causes unacceptable decreases in the fitness of marked individuals.

SUBMITTER: Brooks ME 

PROVIDER: S-EPMC3810375 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

A method for detecting positive growth autocorrelation without marking individuals.

Brooks Mollie E ME   McCoy Michael W MW   Bolker Benjamin M BM  

PloS one 20131028 10


In most ecological studies, within-group variation is a nuisance that obscures patterns of interest and reduces statistical power. However, patterns of within-group variability often contain information about ecological processes. In particular, such patterns can be used to detect positive growth autocorrelation (consistent variation in growth rates among individuals in a cohort across time), even in samples of unmarked individuals. Previous methods for detecting autocorrelated growth required d  ...[more]

Similar Datasets

| S-EPMC3622919 | biostudies-other
| S-EPMC6550178 | biostudies-literature
| S-EPMC8138449 | biostudies-literature
| S-EPMC7158013 | biostudies-literature
| S-EPMC4686311 | biostudies-literature
| S-EPMC5626458 | biostudies-literature
| S-EPMC1462615 | biostudies-other
2015-07-23 | GSE56551 | GEO
| S-EPMC8325598 | biostudies-literature
| S-EPMC3302978 | biostudies-literature