Project description:Despite the increasing awareness of the importance of emerging vector-borne diseases, human tick-borne diseases, particularly rickettsial infections, are overlooked, especially in the countries such as Sudan with limited resources to perform molecular-based surveys. This study aimed at detection and genetic characterization of Rickettsia spp. in ticks collected from Sudan. The samples were first screened for the presence of rickettsial agents by gltA real-time PCR and subsequently characterized by gltA and ompA PCR and size-based multispacer typing. The results demonstrated the wide distribution of Rickettsia africae and/or closely related species across Sudan. The results of this report highlight the need for careful consideration of rickettsial infections in patients with nonmalarial febrile illness in this country. Nationwide surveillance on ticks associated with human rickettsial infections in Sudan is warranted.
Project description:Tick-borne spotted fever group (SFG) rickettsioses are emerging human diseases caused by obligate intracellular Gram-negative bacteria of the genus Rickettsia. Despite being important causes of systemic febrile illnesses in travelers returning from sub-Saharan Africa, little is known about the reservoir hosts of these pathogens. We conducted surveys for rickettsiae in domestic animals and ticks in a rural setting in western Kenya. Of the 100 serum specimens tested from each species of domestic ruminant 43% of goats, 23% of sheep, and 1% of cattle had immunoglobulin G (IgG) antibodies to the SFG rickettsiae. None of these sera were positive for IgG against typhus group rickettsiae. We detected Rickettsia africae-genotype DNA in 92.6% of adult Amblyomma variegatum ticks collected from domestic ruminants, but found no evidence of the pathogen in blood specimens from cattle, goats, or sheep. Sequencing of a subset of 21 rickettsia-positive ticks revealed R. africae variants in 95.2% (20/21) of ticks tested. Our findings show a high prevalence of R. africae variants in A. variegatum ticks in western Kenya, which may represent a low disease risk for humans. This may provide a possible explanation for the lack of African tick-bite fever cases among febrile patients in Kenya.
Project description:We report molecular detection of Rickettsia africae in Amblyomma ovale ticks from Nicaragua and a novel rickettsial strain in an A. triste tick. Of 146 ticks from dogs, 16.4% were Rickettsia PCR positive. The presence of Rickettsia spp. in human-biting ticks in Nicaragua may pose a public health concern.
Project description:DNA of several spotted fever group rickettsiae was found in ticks in Israel. The findings include evidence for the existence of Rickettsia africae and Candidatus Rickettsia barbariae in ticks in Israel. The DNA of R. africae was detected in a Hyalomma detritum tick from a wild boar and DNA of C. Rickettsia barbariae was detected in Rhipicephalus turanicus and Rhipicephalus sanguineus collected from vegetation. The DNA of Rickettsia massiliae was found in Rh. sanguineus and Haemaphysalis erinacei, whereas DNA of Rickettsia sibirica mongolitimonae was detected in a Rhipicephalus (Boophilus) annulatus. Clinicians should be aware that diseases caused by a variety of rickettsiae previously thought to be present only in other countries outside of the Middle East may infect residents of Israel who have not necessarily traveled overseas. Furthermore, this study reveals again that the epidemiology of the spotted fever group rickettsiae may not only involve Rickettsia conorii but may include other rickettsiae.
Project description:Heartwater, caused by Cowdria ruminantium and transmitted by ticks of the genus Amblyomma, is a constraint to ruminant animal production in sub-Saharan Africa. This rickettsial disease could spread from endemically infected areas of sub-Saharan Africa and certain Caribbean islands to other countries, including the United States, in which Amblyomma ticks exist. To detect C. ruminantium in tick vectors and animals, we made DNA probes from C. ruminantium DNA isolated from endothelial cell cultures. Two clones were evaluated; pCS20 from Crystal Springs (Zimbabwe) strain DNA had a 1,306-bp insert, and pCR9 from Kiswani (Kenya) strain DNA had a 754-bp insert. Both DNA probes detected 1 ng of Crystal Springs DNA; however, the pCS20 probe had a 10-fold-greater ability to discriminate between C. ruminantium DNA and DNA from other organisms. Also, the pCS20 probe did not hybridize to 400 ng (highest amount tested) of DNA from bovine cells, 3 protozoa, 3 rickettsiae, and 12 bacteria. In all experiments, C. ruminantium DNA was detected in midguts from 99 of 160 Amblyomma variegatum nymphs infected as larvae and in midguts from 38 of 80 adult ticks infected as nymphs but not in midguts from control nymphs and adults. The presence of C. ruminantium in nymphs and adults was confirmed by transmission of heartwater to goats. The DNA sequences of both probes were determined; synthetic oligonucleotides from pCS20 are recommended as DNA probes for C. ruminantium.
Project description:The threats from vector-borne pathogens transmitted by ticks place people (including deployed troops) at increased risk for infection, frequently contributing to undifferentiated febrile illness syndromes. Wild and domesticated animals are critical to the transmission cycle of many tick-borne diseases. Livestock can be infected by ticks, and serve as hosts to tick-borne diseases such as rickettsiosis. Thus, it is necessary to identify the tick species and determine their potential to transmit pathogens. A total of 1,493 adult ticks from three genera-Amblyomma, Hyalomma, and Rhipicephalus-were identified using available morphological keys and were pooled (n = 541) by sex and species. Rickettsia species were detected in 308 of 541 (56.9%) pools by genus-specific quantitative polymerase chain reaction assay (Rick17b). Furthermore, sequencing of the outer membrane protein A and B genes (ompA and ompB) of random samples of Rickettsia-positive samples led to the identification of Rickettsia aeschlimannii and Rickettsia africae with most R. africae DNA (80.2%) detected in pools of Amblyomma variegatum. We report the first molecular detection and identification of the rickettsial pathogens R. africae and R. aeschlimannii in ticks from Ghana. Our findings suggest there is a need to use control measures to prevent infections from occurring among human populations in endemic areas in Ghana. This study underscores the importance of determining which vector-borne pathogens are in circulation in Ghana. Further clinical and prevalence studies are needed to understand more comprehensively the clinical impact of these rickettsial pathogens contributing to human disease and morbidity in Ghana.
Project description:We determined prevalence of Rickettsia spp. in 172 ticks of the Amblyomma maculatum group collected from 16 urban sites in Oklahoma City, Oklahoma, USA, during 2017 and 2018. Most ticks (59.3%) were collected from 1 site; 4 (2.3%) were infected with Rickettsia parkeri and 118 (68.6%) with Candidatus Rickettsia andeanae.
Project description:Four Amblyomma sabanerae ticks collected from a turtle (Kinosternon sp.) in San Miguel, El Salvador, were found by molecular analysis to be infected by Rickettsia bellii. We provide the first report of Rickettsia bellii in Central America, and the first report of a Rickettsia species in El Salvador.
Project description:We experimentally infected Amblyomma aureolatum ticks with the bacterium Rickettsia rickettsii, the etiologic agent of Rocky Mountain spotted fever (RMSF). These ticks are a vector for RMSF in Brazil. R. rickettsii was efficiently conserved by both transstadial maintenance and vertical (transovarial) transmission to 100% of the ticks through 4 laboratory generations. However, lower reproductive performance and survival of infected females was attributed to R. rickettsii infection. Therefore, because of the high susceptibility of A. aureolatum ticks to R. rickettsii infection, the deleterious effect that the bacterium causes in these ticks may contribute to the low infection rates (<1%) usually reported among field populations of A. aureolatum ticks in RMSF-endemic areas of Brazil. Because the number of infected ticks would gradually decrease after each generation, it seems unlikely that A. aureolatum ticks could sustain R. rickettsii infection over multiple successive generations solely by vertical transmission.