Project description:We evaluated genetic variation in Middle East respiratory syndrome coronavirus (MERS-CoV) imported to South Korea in 2018 using specimens from a patient and isolates from infected Caco-2 cells. The MERS-CoV strain in this study was genetically similar to a strain isolated in Riyadh, Saudi Arabia, in 2017.
Project description:The absence of a robust disease model currently hinders the evaluation of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV that results in mild-to-moderate disease has been utilized to describe the pathogenesis of this virus and for the evaluation of therapeutics, the inability to produce uniform disease with substantial virus replication complicates analysis in countermeasure studies. In an attempt to identify a more robust disease model, DPP4 sequences of various non-human primates were aligned. Modeling of the interactions between the receptor binding domain of MERS-CoV and its cognate receptor DPP4 predicted a "good fit" with complete conservation of all of the critical residues. To determine the feasibility of the marmoset as a MERS-CoV disease model, common marmosets were inoculated with MERS-CoV via combined intratracheal, intranasal, oral and ocular routes. Marmosets developed signs of moderate to severe illness with progressive serious to severe pneumonia. Progressive gross lesions were evident in animals necropsied at 3, 4 and 6 days post inoculation and two animals were euthanized during the study due to disease severity. This is the first description of a moderate-to-severe, with potentially lethality, disease model of MERS-CoV and as such will have utility for vaccine and other countermeasure efficacy evaluations in addition to further pathogenesis studies. Lung tissue samples were isolated and sequenced at 3, 4 and 6 days post inoculation. Two animals were euthanized during the study due to disease severity.
Project description:Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrelluscoronavirus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV.IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.
Project description:Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes a spectrum of respiratory illness, from asymptomatic to mild to fatal. MERS-CoV is transmitted sporadically from dromedary camels to humans and occasionally through human-to-human contact. Current epidemiologic evidence supports a major role in transmission for direct contact with live camels or humans with symptomatic MERS, but little evidence suggests the possibility of transmission from camel products or asymptomatic MERS cases. Because a proportion of case-patients do not report direct contact with camels or with persons who have symptomatic MERS, further research is needed to conclusively determine additional mechanisms of transmission, to inform public health practice, and to refine current precautionary recommendations.